

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar An Autonomous Institute

Department of Computer Science & Engineering

Vision

To become center of excellence in the field of Computer Science and Engineering and develop competent IT technocrats

Mission

- To develop engineering graduates with high degree of processional excellence
- To excel in academics and research through contemporary and real world problems
- To enhance graduate employability through work based learning in social entrepreneurship
- To encourage industrial and nationally recognized institutes collaboration
- To create an environment to nurture lifelong learning

Program Educational Objectives (PEOs)

Graduates will be.

- Able to design and develop computing system using modern technologies by adapting business intelligence and challenges.
- Able to acquire capabilities with aptitude for higher education and entrepreneurship
- Able to function effectively as professionals having excellent interpersonal skills with ethical and social obligations.
- Able to work efficiently in multidisciplinary and multicultural environment
- Able to lead in their respective domain and contribute positively to the needs of society.

Program Specific Outcomes (PEOs)

Graduate will be able to

- Identify, design and develop solution for real world problems by implementing phases of software development process model
- Analyze and apply the computer science engineering solutions in societal and human context
- Demonstrate the skills and knowledge of contemporary issues in the field of Computer science and Engineering

Quality Policy

 To promote excellence in academic and training activities by inspiring students for becoming competent professionals to cater industrial and social needs.

SWVSM'S

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar An Autonomous Institute

Abbreviations

S N	Acronym	Definition	
1	ISE	In-Semester Examination	
2	ESE	End-Semester Examination	
3	ISA	In-Semester Assessment (Term Work)	
4	L	Lecture	
5	Т	Tutorial	
6	P	Practical	
7	СН	Contact Hours	
8	C	Credits	

Course Bucket Terminologies

Sr. No.	Acronym	Definition		
1	PCC	Professional Core Course		
2	MDM	Multidisciplinary Minor		
3	OE	Open Elective Course		
4	HSSM	Humanities Social Science and Management		
5	ELC	Experiential Learning Course		
6	VSEC	Vocational and Skill Enhancement Course		
7	AEC	Ability Enhancement Course		

Course/ Subject Code

S	Y.B.Tech yllabus ange year	UG/PG	Course Category with number	Separator	Branch	Semester	Cou Num	
	23	UG	PCC	-	CSE	5	0	1

Course Term work and POE Code

CSE	5	0	1	T/P/A
Branch	Semester	Course	Number	T - Term work P - POE A - Audit Course

Third Year B. Tech.

(Semester - V)

in

Computer Science & Engineering

Curriculum Structure, Credits and Evaluation Scheme as per NEP 2020 (to be implemented from AY 2025-26)

SWVSM's

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

Third Year B. Tech. (Computer Science and Engineering)

Semester-V

(To be implemented from 2025 - 26)

Curriculum Structure, Credit and Evaluation Scheme as per NEP 2020

Sr.	Category	Sub	Course	Course Title	Teaching Scheme			ne	Examinatio So	n & Eval	uatio	n				
No.	Category	Category	Code	Course True	L T P C		СН	Component	Marks	Min Pass	for sing					
1		PCC	23UGPCC- CSE501	Java Programming	3			3	3	ISE ESE	40 60	16 24	40			
2	Program Core	PCC	23UGPCC-	Database	3			3	3	ISE	40	16	40			
_	Courses	100	CSE502	Engineering						ESE	60	24				
3		PCC	23UGPCC-	Computer	3			3	3	ISE	40	16	40			
3		100	CSE503	Algorithms				3	3	ESE	60	24	10			
4	Program Elective	PEC-1	23UGPEC1-	Dragon Flactive 1	3			2	2	ISE	40	16	40			
4	Course	PEC-1	CSE504-X	Program Elective-1	3	1		3	3	ESE	60	24	40			
5					MDM-3	23UGMDM3- Funda	Fundamentals of	4			4	4	ISE	40	16	40
3	Multidisciplinary	MIDMI-3	CSE505	Machine Learning	7			4	7	ESE	60	24	40			
	Courses	Courses	OF 2	23UGOE2-	Cyber Security and	3			,	2	ISE	40	16	40		
6		OE-2	CSE506-1	Cyber Laws	3			3	3	ESE	60	24	40			
7		PCC	23UGPCC-	Java Programming			4	2	4	ISA	25	1	0			
,		100	CSE501P	Lab			-	2	7	POE	50	1	.0			
0	Program Core	DCC	23UGPCC-	Database			2	1	2	ISA	25	1	0			
8	Courses	PCC	CSE502P	Engineering Lab			2	1	2	POE	25	1	0			
9		PCC	23UGPCC- CSE503T	Computer Algorithms		1		1	1	ISA	25	1	0			
10	Program	DEC 1	23UGPEC1-	Program Elective-I			2	1	2	ISA	25	1	.0			
10	Elective Course	PEC-1	CSE504-XP	Lab			2	1	2	OE	25	1	.0			
					19	1	8	24	28		800	-				

**Additional contact hours are provided for the courses without any credit Note: In theory examination there will be separate passing for ESE and ISE

SWVSM's

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar Third Year B. Tech. (Computer Science and Engineering) Semester-V

(To be implemented from 2025 - 26)

Multidisciplinary Minor (MDM), Open Elective Course (OE) & Program Elective Courses Basket

Multidisciplinary Courses								
	Course Basket Sem -V							
	Multidisciplinary Minor (MDM) and Open Elective Course (OE)							
Category	Sub Category	Course Code	Name of Course					
Multidisciplinary	MDM-3	23UGMDM3-CSE505	Fundamentals of Machine Learning					
Courses	Open Elective – OE2	Cyber Security and Cyber Laws						

Program Electives Courses (PEC) Basket

	PEC – 1							
Category	Sub Category	Course Code	Name of Course					
Drogram	PEC - 1	23UGPEC1-CSE504-1	System Software and Compiler Design					
Program Elective		23UGPEC1-CSE504-2	Cryptography and Network Security					
Course		23UGPEC1-CSE504-3	UNIX and Shell Scripting					

23UGPCC-CSE501 – Java Programming

Click for Syllabus Structure

Teaching Scheme
Lectures: 2 Hrs/Week

Evaluation Scheme
ISA: 25 Marks

Credits : 2

Practical: 4 POE: 25 Marks

Cours	Course Objective: The objective of this course is to						
1	To introduce the concept of object oriented programming using java.						
2	To learn how to implement reliable and secure application using exception	n handling and					
	package concept						
3	Have the ability to write program to perform file operations.						
4	To understand how to design components with java Swing API and prese	nt mechanism of					
	multithreading						
5	To understand how to familiarize database connectivity through JDBC and	d learn the					
	collection framework and explore the concept of networking						
Cours	se Outcomes:						
COs	At the end of successful completion of the course, the students will	Bloom's					
COS	be able to	Taxonomy					
CO1	Articulate the principle of object oriented problem solving &	Remember					
	programming.	Kemember					
CO2	Illustrate code reusability, security and abstraction using inheritance,	Understand					
	package and interface.						
CO ₃	Develop reliable and user friendly applications using exception	Apply					
	handling and file handling.						
CO4	Create desktop apps using SWING and event handling and also	Apply and					
	illustrate multithreading concepts.	Understand					
CO5	Use JDBC & collection framework and network programming concept.	Apply and Understand					
		Understand					

Course Description:

This course introduces students to object-oriented programming using Java, a widely used, platform-independent programming language. The course also covers exception handling, file I/O, collections framework, GUI development using Swing, multithreading and networking. Through hands-on assignments, students will gain practical experience in building robust, reusable, and maintainable software applications in Java.

Inrough	inrough nands-on assignments, students will gain practical experience in building robust,								
reusable	reusable, and maintainable software applications in Java.								
		1	C++						
Prerequ	isites :	2	Operating System						
		3	Computer Networks						
			Section – I						
	Funda	mer	ntal Programming in Java						
Unit-1	ntal Programming in Java: The Java Buzzwords, The Java								
	Programming Environment- JVM, JIT Compiler, Byte Code Concept,								
	HotSpot, A Simple Java Program, Source File Declaration Rules, Comments,								

	Data Types, Variables, Operators, Strings, Input and Output, Control Flow, Big Numbers, Arrays-Jagged Array. Objects and Classes: Object-Oriented Programming Concepts, Declaring Classes, Declaring Member Variables, Defining Methods, Constructor, Passing Information to a Method or a Constructor, Creating and using objects, Controlling Access to Class Members, Static Fields and Methods, this keyword, Object Cloning, Class Design Hints.	07 Hours
Unit-2	Inheritance and Interface Inheritance: Definition, Super classes, and Subclasses, Overriding and Hiding Methods, Polymorphism, Inheritance Hierarchies, Super keyword, Final Classes and Methods, Abstract Classes and Methods, casting, Design Hints for Inheritance, Nested classes & Inner Classes, finalization and garbage collection. Interfaces: Defining an Interface, Implementing an Interface, Using an Interface as a Type, Evolving Interfaces, and Default Methods.	06 Hours
Unit-3	Package and Exception Packages: Class importing, Creating a Package, Naming a Package, Using Package Members, Managing Source and Class Files. Developing and deploying (executable) Jar File. Exception: Definition, Dealing with Errors, The Classification of Exceptions, Declaring Checked Exceptions, Throw an Exception, Creating Exception Classes, Catching Exceptions, Catching Multiple Exceptions, Rethrowing and Chaining Exceptions, finally clause, Advantages of Exceptions, Tips for Using Exceptions.	07 Hours
	Section – II	
Unit-4	I/O Streams and Multithreading I/O Streams: Byte Stream – InputStream, OutputStream, FileInputStream, FileOutputStream, Character Streams- FileReader, FileWriter, BufferedStream, Scanner, File, RandomAccesFile. Multithreading: Processes and Threads, Runnable Interface and Thread Class, Thread Objects, Defining and Starting a Thread, Pausing Execution with Sleep, Interrupts, Thread States, Thread Properties, Joins, Synchronization, Deadlock	06 Hours
Unit-5	GUI using Swing and Collections Graphical User Interfaces using Swing: Introduction to the Swing, Swing features, Swing Top Level Containers, Creating a Frame, Positioning a Frame, Displaying Information in a Panel, The Model-View-Controller Design Pattern, The JComponent Class. Layout Management: Introduction to Layout Management, APIs for Border Layout, Flow Layout, Grid Layout Event Handling: Basics of Event Handling, The AWT Event Hierarchy, Semantic and Low- Level Events in the AWT, Low-Level Event Types User Interface Components: Text Input, Choice Components, Menus, Dialog Boxes Setting the Look and Feel of UI, Introduction to JApplet	07 Hours

Expt. No.	Experiment Title	Bloom's Taxonomy
1	Use of instance variables, constructors, getter, setters Create a class called Employee that includes three pieces of information as instance variables- first name, a last name and a monthly salary. Your class should have a constructor that initializes the three instance variables. Provide a set and a get method for each instance variable. If the monthly salary is not positive, set it to 0.0. Write a test application named EmployeeTest that demonstrates class Employee's capabilities. Create two Employee objects and display each object's yearly salary. Then give each Employee a 10% raise and display each Employee's yearly salary again.	Understand
2	Use of static members of the class. Create class SavingsAccount. Use a static variable annualInterestRate to store the annual interest rate for all account holders. Each object of the class contains a private instance variable savingsBalance indicating the amount the saver currently has on deposit. Provide method calculateMonthlyInterest to calculate the monthly interest by multiplying the savingsBalance by annualInterestRate divided by 12this interest should be added to savingsBalance. Provide a static method modifyInterestRate that sets the annualInterestRate to a new value Write a program to test class SavingsAccount. Instantiate two savingsAccount objects, saver1 and saver2, with balances of Rs 2000.00 and Rs 3000.00, respectively. Set annualInterestRate to 4%, then calculate the monthly interest and print the new balances for both savers. Then set the annualInterestRate to 5%, calculate the next month's interest and print the new balances for both savers.	Apply
3	Implementation of abstract class Create abstract class Shape which has instance variables side, area and perimeter And methods calculateArea(), calculatePerimeter() as abstract methods and display() as concrete method. Write subclasses which extend Shape class like Triangle, Rectangle, Circle, Cube and Squere and override abstract methods and display methods in subclass take instance variable if needed as per the formula. And use parameterized constructor to initialize instance variables using "this" reference variable Write Test class and Create a reference variable of Shape which will hold the objects of all the sub classes and calculate respective area, perimeter and display the results.	Apply
4	Implementation of Interface Create the interface stack which has variable size, abstract methods push(),pop(),display(), overflow() and underflow(). We need to implement 3 subclasses IntegerStack, StringStack and DoubleStack respectively by implementing interface. All the methods in interface are declared for string. And in subclass for integerStack convert string to integer. Same thing to all other. Create one test class and check for the working of all the	Understand

	classes.	
5	Implementation of package and creation of jar file. Develop a mathematical package for Statistical operations like Mean, Median, Average, Standard deviation. Create a sub package in the math package -convert. In "convert" package provide classes to convert decimal to octal, binary, hex and vice-versa. Develop application program to use this package, and build executable jar file of it.	Apply
6	Implementation of Exception handling. (Pre Defined Exception) Develop application which can handle any 5 combination of predefined compile time and runtime exceptions using multiple catch blocks. Use throws and finally keywords as well.	Analayse
7	Implementation of Exception handling. (User defined Exception) Develop a BankAccount class which should contain all methods of Bank i.ebalanceEnquery(), withdraw(), transfer() and deposit(). You should create at least two objects of BankAccount using array and do all operations mentioned above. Also generate user defined exception LowBalanceException, NegetiveNumberException and PasswordMismatchException whenever required. To transfer amount from one account to another use two BankAccount objects.	Develop
8	Simple file handling program in java. Take file name as input to your program through command line, If file is existing the open and display contents of the file. After displaying contents of file ask user – 1.do you want to add the data at the end of file or 2.replace specified text in file by other text. Based on user's response, then accept data from user and append it to file. If file in not existing then create a fresh new file and store user data into it. Also. User should type exit on new line to stop the program. Do this program using Character stream classes.	Develop
9	Implementation of reading student data and store it into file. (Serialization) Take Student information such as name, age, weight, height, city, phone from user and store it in the file using DataOutputStream and FileOutputStream and Retrive data using DataInputStream and FileInputStream and display the result. Use Serialization concept and Bytestream classes.	Develop
10	Implementation of GUI programming (Design of Calc). Develop a Swing GUI based standard calculator program. Use event handling, Layout of swing package.	Design
11	Implementation of GUI programming and multithreading. (Design of Stopwatch). Create Stop Watch with Swing GUI and Multithreading. Provide Facility for Lap Counting.	Develop
12	Implementation of GUI using Networking Create GUI Based chat application using TCP or UDP.	Design
13	Implementation of Collection (ArrayList,LinkedList). Write a program to read a text file one line at a time. Read each line as a	Apply

	String and place that String object into a LinkedList. Print all of the lines	
	in the LinkedList in reverse order.	
	Implementation of Collections (Hashmap,LinkedHashMap).	
14	Fill a HashMap with key-value pairs. Print the results to show ordering by	A
14	hash code. Extract the pairs, sort by key, and place the result into a	Apply
	LinkedHashMap. Show that the insertion order is maintained.	
	Implementation of Student registration and login using GUI.	
15	Write a GUI based program to create a student registration and Login.	Dagian
	Store Registration data in Database and take Login information from	Design
	Database.	

РО	DO1	DO3	DO2	DO4	DO5	DO(DO7	DO0	DO0	PO10	DO11	BO12	If Applicable			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POIU	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	2	1	3	ı	ı	-	1	1	1	1	ı	1	ı	1	
CO2	-	2	2	-	2	-	-	1	-	-	-	-	1	-	1	
CO3	-	-	-	2	2	1	1	1	-	1	-	1	1	1	1	
CO4	2	2	3	-	2	-	-	1	-	-	1	1	1	-	1	
CO5	-	2		1	-	-	2	-	-	1	-	-	1	1	1	

References

Text Books:

1 Core Java- Volume I Fundamentals - Cay Horseman and Gary Cornell, Pearson, Eight edition

Reference Books:

- 1 JAVA-The Complete Reference Herbert Schildt Mcgraw Hill, Oracle Press Tenth edition.
- 2 Head First Java Eric Freeman Elisabeth Robson Bert Bates Kathy Sierra O'Reilly Publication 3 rd edition

SWAYAM Courses (Operational Timestamp: Saturday,10-May-2025 on 3:45PM)

1 SWAYAM Courses (Programming in Java: https://onlinecourses.nptel.ac.in/noc22_cs47/preview [IIT, Kharagpur]

23UGPCC CSE501P - System Software and Compiler Design Lab

Teaching Scheme Evaluation Scheme

Practical: 2 Hrs/WeekISA: 25 MarksCredits: 1POE: 25 Marks

Expt. No.	Title of Experiment	Bloom's Taxonomy
1	Implement some macros in any assembly language and show the interpretation of the macro assembler, Linker and loader	Apply
2	Explore the basic structure and functionality of Lex and YACC tools.	Understand
3	Write a Lex program to identify and count vowels and consonants in a given input string.	Apply
4	Write a Lex program to identify letters and words from a given input string.	Apply
5	Write a Lex program to recognize letters, digits, words, operators, and special symbols.	Apply
6	Write a Lex program to identify positive/negative integers and positive/negative fractions from input.	Apply
7	Write a Lex program to identify signed integers and fractions using file handling.	Apply
8	Write a Lex program to tokenize input from a file.	Apply
9	Write a Lex program to convert printf and scanf statements to write and read using file handling.	Apply
10	Write a YACC program to convert infix expressions to postfix notation.	Apply
11	Write a YACC program to implement a calculator that evaluates valid arithmetic expressions.	Analyze
12	Write a YACC program to check whether a given input string is a pal-indrome.	Analyze

23UGPEC1-CSE504-2P - Cryptography and Network Security Lab

Teaching Scheme Evaluation Scheme

Practical: 2 Hrs/Week ISA: 25 Marks

Credits : 1

Expt. No.	Experiment Title	Bloom's Taxonomy
1	Perform encryption, decryption using the Ceaser Cipher substitution technique.	Apply
2	Perform encryption, decryption using the Hill Cipher substitution technique	Apply
3	Perform encryption, decryption using the Rail Fence transposition technique	Apply
4	Perform encryption, decryption using the Row and Column transposition technique	Apply
5	Implement DES (Data Encryption Standard) Algorithm	Apply
6	Implement RSA Algorithm	Apply
7	Implement the Diffie-Hellman Key Exchange Algorithm	Apply
8	Demonstrate intrusion detection system (ids) using any tool eg. Snort or any other software.	Analyze
9	Defeating Malware i) Building Trojans ii) Rootkit Hunter	Analyze
10	Configuring S/MIME for e-mail communication	Analyze
11	Port Scanning and Monitoring Using Nmap.	Analyze
12	Perform surveillance through packet sniffer tool like Wireshark &TCP Dump	Analyze

23UGPEC1-CSE504-3P-UNIX and Shell Programming Laboratory <u>Click for Syllabus Structure</u>

Teaching Scheme

Evaluation Scheme

Practical : 2 Hrs/Week ISA : 25 Marks

Credits

Expt. No.	Experiment	Bloom's Taxonomy
1	Installing, partitioning, and configuring GNU/Linux OS distribution	Understand & Apply
2	Essential Linux/Unix commands (a) General Purpose Utilities (b) File System (file handling) Commands (c) Directory related commands (d) Process control commands (e) Text Processing commands (f) Filtering using Regular Expression (g) Networking Commands	Apply
3	Implementation of various operations on Files (creat, open, read, write, append, fstat, dup)	Apply
4	Implementation of various system call (OPEN,READ,WRITE)	Apply
5	Study and implementation of pipe() system call (Reading and Writing through Named and Unnamed Pipe)	Apply
6	Signal Handling and writing user defined function as signal handler	Apply
7	Use of fork() and exec()	Apply
8	Use of important filters for grep ,seed and features of Unix regular expression	Apply
9	Shell Scripting Programming Scenario 1	Apply
10	Shell Scripting Programming Scenario 2	Apply

23UGPCCSE502 Database Engineering

Teaching Scheme

Practical

Click Syllabus Structure

Evaluation Scheme ISE: 40 Marks ESE: 60 Marks

Lectures : 31 Credits : 2

: 3 Hrs/Week

Course Objective: The objective of this course is Understand the Fundamental Concepts of Database Systems 2 Develop Proficiency in Database Design Techniques 3 Gain Practical Skills in SQL Programming Explore Data Storage, Indexing, and File Organization Techniques 4 Understand Transaction Management and Recovery Mechanisms **Course Outcomes:** At the end of successful completion of the course, the students will Bloom's **COs Taxonomy** Describe the fundamentals of Database and Relational Database CO₁ Understand Management Systems Identify appropriate Entities and their Relationship, also Convert the CO₂ Understand same to Relational Database for a given problem Identify the use of functional dependency and normalization in database CO₃ Apply Write SQL queries to design & manage the database CO4 Analyze Illustrate Transactions, Concurrency and Recovery apply to database CO₅ Analyze system **Course Description:** This Course is designed to understand the internals of Database System, with elaboration from Database Design, Using Relational Database (using SQL) and the transaction concepts Set Theory Prerequisites: 2 Operating System Data Structures Section - I **Introduction to Databases** Database System Applications, Purpose of Database Systems, View of Data, Database Languages, Specialty Databases, Database Users & Unit-1 6 Hrs Administrators, Structure of Relational Databases, Database Schema, Keys, Relational Query Languages, Relational Operations **Database Design E-R Model:** The Entity-Relationship Model, Constraints, Entity-Relationship Diagrams, Reduction to Relational Schemas Unit-2 **Normalization:** Data Redundancies & Update Anomalies, Functional 7 Hrs Dependencies, The Process of Normalization, First Normal Form, Second Normal Form, Third Normal Form, Boyce-Codd Normal Form

	Structured Query Language (SQL)						
Unit-3	Overview of the SQL Query Language, SQL Data Definition, Basic						
	Structure of SQL Queries, Additional Basic Operations, Set Operations,						
	Aggregate Functions, and Nested sub Queries, Modification of Databases, Joins and Views and DCL						
	Section – II						
	Data Storage & Indexing						
IInit 1	File Organization, Organization of records in File, Data Dictionary Storage,						
Unit-4	Basic Concepts indexing & hashing, Ordered Indices, B+ Tree Index files,						
	Static Hashing						
	Transaction Management						
	Transaction Concept, A Simple Transaction Model, Transaction						
Unit-5	Atomicity and Durability, Transaction Isolation, Serializability, Lock-						
	Based Protocols, Deadlock Handling, Timestamp-Based Protocols,	7 Hrs					
	Validation-Based Protocol						
	Recovery System						
Unit-6	Failure Classification, Storage, Recovery and Atomicity, Recovery						
	Algorithm, Failure with Loss of Non-volatile Storage, Remote Backup	6 Hrs					
	Systems						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	1	2	ı	1	1	1	1	1		-	1	2	1	2
CO2	2	3	2	1	1		1	-					3	1	2
CO3	2	2	3	3	-		1	-				1	3		2
CO4	1		1	1	2	ŀ	1	I	1				3		3
CO5	2	1	1	1	ı	1	I	1	1			1	2	1	2

Re	References					
Te	Text Books:					
1	Database System Concepts, A. Silberschatz, H.F. Korth, S. Sudarshan, 6th Edition, Mc Graw					
1	Hill Education [for Unit No. I, 2.1, III,IV,V,VI]					
2	Database Systems - A practical approach to Design, Implementation and Management Thomas					
2	Connolly, Carolyn Begg, 3rd Edition, Pearson Education [for Unit No. II, 2.2]					
Re	ference Books:					
1	Database Systems - Design, Implementation and Management, Rob & Coronel 5th Edition,					
	Thomson Course Technology					
2	Fundamentals of Database Systems, Ramez Elmasri, Shamkant B. Navathe, 4th Edition,					
	Pearson Education					

23UGPCC-CSE503 - Computer Algorithms

Teaching Scheme
Lectures: 3 hrs/week

Credits: 3

Tutorials: 1

Evaluation Scheme:
ISE: 40 Marks
ESE: 60 Marks

Course Objectives: The objective of this course is to

- 1. To introduce basic concepts and importance of algorithms.
- 2. To explain design techniques like Divide and Conquer, Greedy, Dynamic Programming.
- 3. To understand algorithms for sorting, searching, and graph traversal.
- 4. To explore backtracking and its use in problem solving.
- **5.** To give an overview of NP problems and computational limits.

Course Outcomes:

Course Outcomes.							
At the end of successful completion of the course the student will be able to	Blooms Taxonomy						
Understand basics of algorithms and performance analysis.	Understand						
Solve problems using divide & conquer, greedy, and dynamic programming.	Apply						
Implement and analyze sorting, searching, and graph algorithms.	Analyze						
Solve optimization problems using backtracking.	Analyze						
Classify problems by complexity: P, NP, NP-Complete, NP-Hard.	Evaluate						
	Solve problems using divide & conquer, greedy, and dynamic programming. Implement and analyze sorting, searching, and graph algorithms. Solve optimization problems using backtracking.						

Description

This Course is designed to understand the various key aspects and algorithm design techniques to solve the real-world problems.

	1:	Data Structures
Prerequisites:	2:	Discrete Mathematics
	3:	Engineering Mathematics
	4:	Programming Concepts

	Section - I							
Unit 1	Divide and Conquer							
Cint 1	Algorithm-Algorithm Specification, Performance Analysis, Randomized							
	Algorithms. Divide and Conquer: The General Method, Binary Search, Finding	0.11						
	the Maximum and Minimum, Merge Sort, Quick Sort, Selection.	9 Hrs						
Unit 2	The Greedy Method							
Cint 2	The General Method, Knapsack Problem, Job sequencing with deadlines, Minimum-Cost Spanning Trees – Prim's and Kruskal's Algorithms, Optimal Storage on tapes, Optimal Merge Patterns- Huffman code, Single Source Shortest Paths.							

Unit 3	Dynamic Programming						
	The General Method, Multistage Graphs, All Pair Shortest Paths, Reliability design, Traveling Sales Person Problem.	8 Hrs					
	Section – II						
Unit 4	Basic Traversal and Search Techniques						
	Techniques for Binary Trees, Techniques for Graphs – Breadth First Search & Traversal, Depth First Search & Traversal and Spanning Trees, connected components and spanning tree, Biconnected Components and DFS	6 Hrs					
Unit 5	Backtracking						
	The General Method, Sum of Subsets, n-queen problem, Hamiltonian Cycle, Graph Coloring	5 Hrs					
Unit 6	NP Hard and NP Complete						
	Basic Concepts, P, NP, NP-Complete, NP-Hard Problems, Introduction to NP Hard Graph Problems.	3 Hrs					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	ı	-	-	ľ	-	ı	ı	ı	2	ı	3	-
CO2	3	3	3	-	2	-	-	-	-	-	-	2	3	2	-
CO3	3	3	3	2	3	-	-	-	-	-	2	2	3	2	2
CO4	3	3	2	2	2	-	-	-	-	-	-	2	3	2	-
CO5	-	3	-	-	-	-	-	-	-	-	-	3	-	3	2

References:

Text Books

- Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni, Sanguthevar Rajasekaran, 2nd Edition, University Press.
- 2 Introduction to Algorithms, Thomas Cormen, Charles Leiserson, Ronald Rivest, Clifford Stein,3rd Edition,PHI.

Reference Books

- 1 Introduction to The Design and Analysis of Algorithms", Anany Levitin, 3rd Edition, Pearson.
- 2 Fundamentals of Algorithms Gilles Brassard, Paul Bratley Pearson Education

SV	SWAYAM Courses:				
1	https://onlinecourses.nptel.ac.in/noc22_cs71/preview [CMI]				
2	https://onlinecourses.swayam2.ac.in/cec22_cs13/preview [UoK]				
A	dditional Web-link:				
1	https://docs.oracle.com/cd/E19059-01/stud.10/819-0493/OtherTools.html				
2	http://www.uniquecareer.in/computer-algorithm/ [TKIET]				

	Term Work & Tutorial List
	Algorithm Basics and Performance:
1	Explain the importance of algorithms and how to analyze their time complexity.
	Solve: Analyze the time complexity of binary search and linear search algorithms.
	Divide and Conquer:
2	• Describe the divide and conquer approach with examples like finding maximum/minimum in an array.
	• Solve: Perform Merge Sort on the array [38, 27, 43, 3, 9, 82, 10].
	Binary Search Algorithm:
3	Explain binary search with its recursive and iterative forms.
	• Solve: Trace the steps of binary search for finding 43 in the sorted array [10, 20, 30, 40, 43, 50].
	Greedy Method and Knapsack Problem:
4	Explain the greedy method using the fractional knapsack problem.
	• Solve: Given weights and profits, use the greedy approach to maximize profit in fractional knapsack.
	Minimum Spanning Tree Algorithms:
5	Discuss Prim's and Kruskal's algorithms and their applications.
	Solve: Find MST for a given graph with vertices and edges (provide a simple weighted graph).
	Dynamic Programming Introduction:
6	Explain the concept of overlapping subproblems and optimal substructure.
	• Solve: Use dynamic programming to find the shortest path in a multistage graph (simple example).
	All Pair Shortest Path (Floyd Warshall):
7	Explain Floyd Warshall algorithm and its time complexity.
	Solve: Apply Floyd Warshall to the given adjacency matrix and find shortest paths.
	Tree and Graph Traversal:
8	Explain BFS and DFS with examples in graphs and binary trees.
	Solve: Perform BFS and DFS traversal on the provided graph and write the traversal order.
	Backtracking Method:
9	Explain backtracking with the N-Queens problem and sum of subsets.
	• Solve: Write steps to place 4 queens on a 4x4 chessboard without conflict.
	Hamiltonian Cycle Problem:
10	Define Hamiltonian Cycle and explain why it is NP-Complete.
	Solve: Try to find a Hamiltonian cycle in a small given graph (example with 5 vertices).
	NP Problems Overview:
11	Differentiate between P, NP, NP-Complete, and NP-Hard problems with examples.
	Write a short note on why solving NP-Complete problems efficiently is challenging.

23UGPCC CSE501 - System Software and Compiler Design

Click for Syllabus Structure

Teaching Scheme
Lectures: 2 Hrs/Week

Evaluation Scheme
ISE: 40 Marks

Credits : 2

Tutorials : -- ESE : 60 Marks

Cours	Course Objective: The objective of this course is to					
1	Introduce the fundamental concepts of language processors, including assemblers, linkers, loaders, and macro processors.					
2	Explain the structure and working of compilers and their constituent phas	es.				
3	Design and implement the analysis phases of a compiler such as lexical an analysis.	nd syntax				
4	Develop and implement the synthesis phases of a compiler, including intermediate code generation and code optimization.					
Cours	se Outcomes:					
COs	At the end of successful completion of the course, the students will	Bloom's				
COS	be able to	Taxonomy				
CO1	Explain the translation process of assembly language and describe the functions of assemblers.	Understand				
CO2	Employ macro processing techniques and demonstrate understanding of linking and loading mechanisms.	Apply				
CO3	Interpret the structure and functioning of a compiler, emphasizing lexical and syntax analysis.	Understand				
CO4	Construct top-down and bottom-up parsers for context-free grammars using suitable parsing strategies.	Apply				
CO5	Formulate intermediate code using syntax-directed translation techniques and generate basic optimizations with three-address instructions.	Apply				

Course Description:

This course introduces system software components such as assemblers, loaders, and compilers, with a focus on compiler phases including lexical analysis, syntax analysis, intermediate code generation, and optimization.

with a focus on compiler phases including fexical analysis, syntax analysis, intermediate co-						
generation	on, and c	ptii	mization.			
		1	Operating Systems			
Prerequ	isites :	2	Finite Automata and Formal Languages			
		3	Microprocessor Architecture			
Section – I						
	Language Processors and Assemblers					
Unit-1	Introduction to Language Processors, Elements of Assembly Language					
Umt-1	Programming, Advanced Assembler Directives, Pass-I of the Assembler,					
	Interme	edia	te Code Forms, Pass-II of the Assembler			
Unit-2	Macros, Linkers and Loaders					
	Macro	De	finition and Calls, Macro Expansion and Nested Macro Calls,	Hours		

	Advanced Macro Facilities, Relocation and Linking Concepts, Self-							
	Relocating Programs, Loaders							
	Lexical Analysis							
Unit-3	Structure of a Compiler, Role of the Lexical Analyzer, Lexical Errors,	07						
Unit-3	Lexemes, Tokens, and Patterns, Input Buffering and Transition Diagrams,	Hours						
	Lexical Analyzer Generator: LEX							
	Section – II							
	Syntax Analysis							
Unit-4	Introduction, Context Free Grammar (CFG), Top-Down Parsing: Recursive							
UIIIt-4	Descent Parsing Technique and Predictive Parsing Technique: LL (1),							
	Bottom up Parsing: LR(0), SLR (1).							
	Syntax Directed Translation and Intermediate code generation							
	Syntax-Directed Translation (SDD and SDT), Synthesized and Inherited	0=						
Unit-5	Attributes, S-Attributed and L-Attributed Definitions, Intermediate Code	07 Hours						
	Generation: Triples, Quadruples, and Three-Address Instructions, TAC for	nours						
	Boolean Expressions and Assignment Statements							
	Code Optimization and Code Generation	0.0						
Unit-6	Introduction to Code Optimization, Principal Sources of Optimization,	06 Hours						
	Peephole Optimization, Issues in Code Generation	110013						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2			2							1	3		
CO2	2	2			3							1	3	2	
CO3	3	2		1	3							1	3	2	
CO4	2	3	2		3							1	3	3	
CO5	3	3	2		3							2	3	3	

Re	eferences
Te	ext Books :
1	System Programming and Operating System, D. M. Dhamadhere, 2nd Edition-McGraw Hill
	Education India.(Unit I & II)
2	Compilers: Principles, Techniques and Tools, Jeffery D. Ullman, Alfred V Aho, Ravi Sethi-
	Pearson Education India.(Unit III, IV, V & VI)

Reference Books:

1 Compiler Construction, D.M. Dhamdare, Mc-Millan

SWAYAM Courses (Operational Timestamp: Saturday,10-May-2025 on 3:45PM)

SWAYAM Courses (Operational Timestamp:

https://onlinecourses.nptel.ac.in/noc25_cs13/preview [IIT, Kharagpur]

.

23UGPEC1-CSE504-2: Cryptography and Network Security

Teaching SchemeEvaluation SchemeLectures: 2 Hrs/WeekISE : 40 MarksCredits: 2ESE : 60 Marks

Tutorials : --

Cour	Course Objective: The objective of this course is					
1	Explain different types of symmetric and asymmetric security techniques.					
2	Compare different types of cryptographic algorithms to ensure data integrity.					
3	Explain different types of security protocols in TCP/IP protocol suite.					
4	Understanding different types of security threats for computer system.					
Cour	se Outcomes:					
COs	At the end of successful completion of the course, the students will	Bloom's				
COS	be able to	Taxonomy				
CO1	<i>Explain</i> classical encryption techniques and the basic model of network security.	Understand				
CO2	Use symmetric and asymmetric key cryptographic algorithms including DES, RSA, and Diffie-Hellman	Apply				
СОЗ	Examine cryptographic authentication mechanisms such as hash functions, MACs, and digital signature schemes	Analyze				
CO4	<i>Implement</i> key management and user authentication protocols like Kerberos and X.509	Apply				
CO5	Use internet and system security tools to detect and prevent threats	Apply				

Course Description:

This course is designed to provide a fundamental understanding of Information and Network Security. It covers core concepts such as cryptographic techniques, authentication mechanisms, key management, secure communication protocols, and system security to protect data and network infrastructure against various threats.

Prerequ	isites:	1	Basic knowledge of Communication system			
			Section – I			
	Classic	cal	Encryption Techniques			
Unit-1	Overview – The OSI Security Architecture, Security Attacks, Services and Mechanism, A Model for Network Security, Symmetric Cipher Model Classical Encryption Techniques – Substitution Techniques, Transposition Techniques.					
	Symm	etr	ic and Asymmetric Key Cryptography			
Unit-2	Data E Cipher Public	ner De K	chers and the Data Encryption Standard: Block Cipher Structure, ryption Standard (DES), A DES Example, Strength of DES, Block right Principles. Example, Strength Principles. Example, Strength of Public-Key Cryptosystems, RSA right Principles. Example, Strength Principles of Public-Key Cryptosystems right Principles. Example, Strength Principles right Principles right Principles. Example, Strength Principles right Principle	7 Hours		

	Cryptographic Authentication Functions	
	Cryptographic Hash Functions:	
Unit-3	Applications of Cryptographic Hash Functions, Two Simple Hash Functions,	
Omt-3	Hash Functions Based on Cipher Block Chaining.	8
	Message Authentication Codes: Message Authentication Requirements,	Hours
	Message Authentication Functions, Requirements for MAC and Security of	Hours
	MACs, MACs Based on Hash Functions.	
	Digital Signatures:	
	Digital Signatures, ElGamal Digital Signature Scheme, Schnorr Digital	
	Signature Scheme, Digital Signature Standard (DSS)	
	Section – II	
	Key Management and User Authentication	
Unit-4		
	Symmetric Key Distribution Using Symmetric Encryption, Symmetric Key	
	Distribution Using Asymmetric Encryption, Distribution of Public Keys,	
	X.509 Certificates, Public Key Infrastructure	_
	User Authentication Protocol:	7
	Remote User-Authentication Principles, Remote User-Authentication Using	Hours
	Symmetric Encryption, Kerberos, Remote User Authentication Using	
	Asymmetric Encryption	
	Internet Security Protocols	
Unit-5	Transport-Level Security: Web Security Issues, Secure Sockets Layer	
	(SSL), Transport Layer Security (TLS), SSH, Electronic Mail Security:	
	Pretty Good Privacy (PGP). IP Security: IP Security Overview, IP Security	6
	Policy, Encapsulating Security Payload. Case Study: Perform surveillance	Hours
	through packet sniffer tool like Wireshark &TCP Dump.	
	System Security	
Unit-6	Intruders: Intrusion Detection, Password Management, Malicious Software:	
	Viruses and Related Threat, Countermeasures. Firewalls: Firewall Design	
	Principles, Trusted Systems.	6
	Timespies, Trusieu bysiems.	Hours

CO-PO-PSO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	ı	ı	I	2	ı	I	ı	2	-	3	1	-	
CO2	3	3	2		3	2				2		3	3		
СОЗ	3	3	2		3	2				2		3	2		
CO4	3	2	2		3	2				2		3	2		
CO5	3	3	3	2	3	2			2	3	2	3	3		

Re	eferences								
Te	Text Books:								
1	Williams Stallings – Cryptography and Network Security Principles and Practices Pearson Education (LPE), 6th Edition (For Unit I to V)								
2	Williams Stallings – Cryptography and Network Security Principles and Practices Pearson Education (LPE), 4th Edition(For Unit VI)								
Re	eference Books :								
1	Cryptography & Network Security B.A. Forouzan McGrawHill								
2	Cryptography and network security – AtulKahate (TMGH)								
3	Handbook of Applied Cryptography - Menezes, an Oorschot, and S.A. Vanstone								
SV	VAYAM Courses (Operational Timestamp: Sat,16-Jul-2022 on 7:00 AM)								
1	https://onlinecourses.swayam2.ac.in/cec22_cs15/preview								

23UGPEC1-CSE504-3 – (PEC-I) UNIX and Shell Programming

Click for Syllabus Structure

Teaching Scheme
Lectures: 2 Hrs/Week

Evaluation Scheme
ISE: 40 Marks

Credits : 2

Tutorials : -- ESE : 60 Marks

Cour	se Objective: The objective of this course is to								
1	To provide knowledge to the students about Fundamental architecture of UNIX/Linux operating system fundamentals								
2	To understand File subsystem and related functions (system calls)								
3	To understand Process Control subsystem and related functions (system calls) and memory allocation								
4	To understand the Unix/Linux process and Inter Process Communication using pipes, signals								
5	To provide a comprehensive introduction to Shell programming								
Cour	Course Outcomes:								
COa	At the end of successful completion of the course, the students will be	Bloom's							
COs	able to	Taxonomy							
CO1	To understand Fundamental architecture of UNIX and its components	Understanding							
CO2	To Demonstrate various UNIX system calls(functions) for file subsystem handling and its data structures	Apply							
CO3	To Demonstrate various UNIX system calls(functions) for Process control subsystem handling and IPC	Apply							
CO4	Demonstrate UNIX signals, important filters and features of UNIX regular expression.	Apply							
CO5	Learn UNIX shell programming constructs and write the shell scripts for given scenario	Apply							

Course Description:										
This course provides understanding of the Unix, GNU Linux operating system and describes the application										
programming interface of the UNIX family of operating systems programming environment										
		1	Data Structures and Algorithms							
Prerequ	isites:	2	Operating System Course (CSE404)							
		3	Concepts of Operating System Process							
			Section – I							
	UNIX System Overview									
	Introdu	ctio	on, UNIX Architecture, User Perspective : File System, Processing							
	Enviro	nme	ent, Building Block Primitives. Architecture of Unix OS,	0.0						
Unit-1	Introdu	ctio	on to System Concepts: Overview of File Subsystems, Processes.	06 Hours						
	Logging, Files and Directories.									
		-								

Unit-2	File I/O, Files and Directories							
	File I/O: Introduction File Descriptors, open(), data structures after open(),							
	data structure after two processes open files, read(), write(),							
	creat(), close(), data structure after a processes close the file. lseek(), File	07 Hours						
	Sharing, dup(), dup2(). Files and Directories: Introduction stat(), fstat(),							
	File Types, File Access Permissions, File Systems, Symbolic Links, Hard							
	Links							
	Process Environment, Control							
	Process Environment : Introduction, <i>main()</i> function, Process Termination,	06						
Unit-3	Command-Line arguments, Environment List, Memory Layout of 'C'	Hours						
	Program, Shared Libraries, Memory Allocation. Process Control: Process	Hours						
	Identifiers, fork(), vfork(), exit(), wait(), exec(), system()							
	Section – II							
	Process Relationships and IPC							
Unit-4	Process Relationships: Terminal Logins, Linux Terminal Logins, Network							
	Logins, Linux Network Login, Job Control. IPC: Pipes, FIFOs							
	Signals and Filters using Regular Expression							
	Signals: Signal Concepts, Signal Function, kill(), raise(), alarm(), pause().							
	Filters Using Regular Expression – <i>grep</i> : Searching for a Pattern, Basic							
Unit-5	Regular Expression(BRE), Extended Regular Expression (ERE) and <i>egrep</i> ,							
	sed: The Stream Editor, Line Addressing, Using Multiple Instructions,	Hours						
	Context Addressing, Writing Selected Lines to a File, Text Editing,							
	Substitution, Basic Regular Expressions Revisited							
	Essential Shell Programming							
	Shell Scripts, <i>read</i> : Making Scripts Interactive, Using Command-Line							
	Arguments, <i>exit</i> and Exit Status of Command, The Logical Operators &&	07						
Unit-6	and , The if conditional, Using <i>test</i> and [] to Evaluate Expressions, The case	Hours						
	Conditional, <i>expr</i> : Computation and String Handling, \$0: Calling a Script	Hours						
	by Different Names, while: Looping, for: Looping with a List, set and							
	shift, The Here Document, trap: Interrupting a Program							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2			2							2	3		
CO2	3	3	2		3							2	3	2	
CO3	3	3	2	2	3							2	3	3	
CO4	3	2	2	2	3							2	3	2	
CO5	3	3	3		3							2	3	3	2

Re	References									
Te	Text Books:									
1	Advanced Programming in the UNIX Environment, W.Richard Stevens, 2nd Edition,									
	Pearson									
2	The Design of UNIX Operating System, Maurice Bach, PHI									
3	Unix Concepts and Applications, Sumitabha Das, 3rd Edition, Tata McGraw Hill									
Re	eference Books :									
1	Understanding the LINUX Kernel, Daniel P. Bovet and Marco Cesati, 3 rd Edition, O'Reilly									
2	LINUX In a Nutshell, Ellen Siever, Stephen Figgins, Robert Love, Sixth Edition, O'Reilly									
3	Linux: The Complete Reference, Sixth Edition, Richard Petersen, McGraw-Hill									
SV	VAYAM Courses (Operational Timestamp: Saturday, 27-May-2025 on 3:45PM)									
1	https://onlinecourses.nptel.ac.in/noc22_cs78/preview [IIT, Madras]									

https://onlinecourses.swayam2.ac.in/cec22_cs23/preview [University of Madras]

23UGMDM3-CSE505 - Fundamentals of Machine Learning

Lectures:4 Hrs/weekEvaluation Scheme:Credits:4ISE:40 MarksTutorial:--ESE:60 Marks

Course Objectives: The objective of this course is to

- 1. Introduce basic concepts and types of machine learning.
- 2. Explain data handling and visualization techniques.
- 3. Help students understand simple ML models.
- 4. Introduce classification and clustering with real-world examples.
- **5.** ML applications, trends, and use across science and engineering fields.

Course Outcomes:

COs	At the end of successful completion of the course the	Blooms
COS	student will be able to	Taxonomy
CO1	Explain basic concepts and terms in machine learning.	Understand
CO2	Classify different learning types with relevant examples.	Understand
CO3	Apply suitable ML techniques to basic real-world problems.	Apply
CO4	Interpret outcomes of simple models.	Analyze
CO5	Describe ML applications in science and engineering fields.	Understand

Description

This course introduces the basic concepts of Machine Learning in a simplified and practical way for students from non-computer science backgrounds. It focuses on real-world applications, intuitive understanding of learning models like regression and classification, and how ML can help solve problems in various engineering fields without requiring programming knowledge.

Duous anisitas.	1:	Basic understanding of mathematical and statistical concepts.
Prerequisites:		Basics of programming languages.

Unit 1	Introduction to Machine Learning									
	Basics of Machine Learning, Types of Learning: Supervised, Unsupervised, Real-life examples of ML (e.g., spam filter, movie recommendations), Steps in ML process.	5Hrs								
Unit 2	Working with Data									
	Basics of data collection, types of data (numeric, categorical), importance of data cleaning. Introduction to data visualization using line charts, bar charts, pie charts, histograms, scatter plots, and box plots.									

Unit 3	Understanding Predictions – Regression	
	Concept of prediction with real-life examples, Introduction to simple linear regression and multiple regression, understanding the line of best fit and visual interpretation. Basics of evaluating model accuracy using simple error metrics (e.g., Mean Absolute Error).	6Hrs
Unit 4	Understanding Categories – Classification	
	Concept of classification and linear classifiers, introduction to logistic regression, real-life applications of classification, introduction to decision trees, relevant terminologies and decision boundaries.	6Hrs
Unit 5	Introduction to Clustering	
	Differences between supervised and unsupervised learning; grouping data based on similarity without predefined labels; introduction to the concept of cluster centroids and K-Means clustering.	5Hrs
Unit 6	Applications and Trends in ML	
	Overview of recommendation systems in OTT platforms, streaming, e-commerce, and social networking; introduction to image, text and voice analysis (natural language processing); discussion on responsible ML use, ethics, limitations, and future career opportunities.	7Hrs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2										1	2		
CO2	3	2	1	1	1	1	1	!	1	-	-	1	2	ļ	
CO3	2	3	2	1	2	!	ļ	!	1	1	-	2	3	3	2
CO4	2	2		3	2					1		2	3	2	2
CO5	2				3	2	2	2	1	1	1	3	2	3	3

References:

Text Books

Tom M. Mitchell, "Machine Learning", McGraw-Hill, 1997.

Reference Books

- Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow", O'Reilly Media, 2019.
- 2 Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", Pearson, 4th Edition, 2020.

SWA	SWAYAM Courses:				
1	https://onlinecourses.nptel.ac.in/noc23_cs18/preview [IIT Madras]				
2	https://onlinecourses.swayam2.ac.in/imb24 mg126/preview [ATLAS SkillTech University]				
Addit	Additional Web-link:				
1	https://www.coursera.org/learn/machine-learning [Coursera]				
2	https://www.udemy.com/course/machinelearning/?couponCode=IND21PM [Udemy]				

23UGOE2-CSE506-1 - Cyber Security and Cyber Laws

Click Syllabus Structure

Teaching SchemeEvaluation SchemeLectures: 3 Hrs/WeekISE: 40 MarksCredits: 3ESE: 60 Marks

Tutorials : --

Cours	Course Objective: The objective of this course is				
1	To gain knowledge about securing both clean and corrupted systems, protect personal				
	data, and secure computer network				
2	To examine secure software development practice				
3	To understand key terms and concepts in Information Technology Act				
4	To incorporate approaches for incident analysis and response				
Cour	se Outcomes:				
COs	At the end of successful completion of the course, the students will	Bloom's			
COS	be able to	Taxonomy			
CO1	Comprehend computer security fundamentals, including threats and key terminology.	Remember			
CO2	Examine different types of cybercrimes such as fraud, identity theft, DoS attacks, and malware, along with their mitigation techniques	Analyze			
СОЗ	Use hacking methods like reconnaissance and penetration testing, and implement security tools such as firewalls, IDS, and VPNs.	Apply			
CO4	Describe India's cyber laws, including the IT Act 2000, its amendments, and legal challenges related to cybercrime.	Understand			
CO5	Examine the concepts of digital forensics & incident management	Analyze			

Course Description:

This course is designed to provide a foundational understanding of Information and Network Security. It covers key concepts including types of threats, cybercrimes, malware, and hacking techniques. Students will also explore security technologies, legal perspectives, and digital forensics practices. The course equips learners with essential knowledge to identify, prevent, and respond to cyber threats.

cyber threa	ts.					
D	4	1	Fundamental knowledge of Data Communication			
Prerequisi	tes:	2	Networking and Information Security			
			Section – I			
	Introd	lucti	ion to Computer Security			
Unit-1	Introd	uctio	on, Identifying Types of Threats, Basic Security Terminology,			
	Concepts and Approaches, Online Security Resources.					
				Hours		
	Cyber	Fra	nuds, DoS, Viruses			
Unit-2	Introd	uctio	on to Cyber Security, Cyber Stalking, Fraud, and Abuse:			
UIIIt-Z	Introd	uctio	on, How Internet Fraud Works, Identity Theft, Cyber Stalking,			
	Protec	ting	Yourself Against Cyber Crime.			
	Service Attacks: Introduction, DoS, Illustrating an Attack					
	Introduction, Viruses, Trojan Horses, The Buffer-Overflow Attack.	8				
			er Virus/Buffer Overflow, Spyware, Other Forms of Malware,	Hours		
	Detect	ing a	and Eliminating Viruses and Spyware.			

	Hacking Methods and Strategies					
Unit-3	Introduction, Basic Terminology, The Reconnaissance Phase, Actual Attacks, Malware Creation, Penetration Testing					
	Section – II					
	Computer Security Technology					
Unit-4	Introduction, Virus Scanners, Firewalls, IDS, Digital Certificates, SSL/TLS, Virtual Private Networks, Wi-Fi Security.	6 Hours				
	The Legal Perspectives of Cyber Crime					
Unit-5	Need of cyber laws, The Indian context, The Indian IT ACT: Admissibility of Electronic records, Amendments made in Indian ITA 2000, Positive Aspects and weak areas of ITA 2000, Challenges to Indian law and cybercrime scenario in India, Digital signatures and the Indian ITA act.	6 Hours				
II:4 (Introduction to Digital Forensics					
Unit-6	Introduction, General Guidelines, Finding Evidence on the PC, Finding Evidence in System Logs, Getting Back Deleted Files, Operating System Utilities, Mobile Forensics: Cell Phone Concepts.	6 Hours				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-						1	1		1	3		
CO2	2	3	2		-	-	2	-	1	1	1	1	3	2	
CO3	2	3	3	2	3							1	3	3	3
CO4	1					2	3	2		2					
CO5	2	2	2	2	2					1		2	3	3	2

Referer	References						
Text Bo	Text Books:						
1	Computer Security Fundamentals - Chuck Easttom, Pearson, Third edition(Unit I to IV &VI)						
2	Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Nina Godbole and Sunil Belapure, Wiley INDIA.(Unit V)						
Referen	nce Books :						
1	Jason Luttgens, Matthew Pepe, Kevin Mandia, Incident Response & Computer Forensics, McGraw-Hill Osborne Media, 3 rd edition, 2014						
2	Keith J. Jones, Richard Bejtlich, Curtis W. Rose, Real Digital Forensics: Computer Security						
	and Incident Response, Paperback – Import, 2005.						

3	Handbook of Applied Cryptography - Menezes, an Oorschot, and S.A. Vanstone					
SWAY	SWAYAM Courses (Operational Timestamp: Thu,29-May-2025 on 7:00 AM)					
1	https://onlinecourses.swayam2.ac.in/cec22 cs21/preview [AIHSHEW, Coimbatore]					
2	https://onlinecourses.swayam2.ac.in/nou22_ge67/preview [DBAOU,Gujrat]					

23UGPCC-CSE502P Database Engineering Lab

Teaching Scheme Evaluation Scheme

Practical: 2 Hrs/WeekISA: 25 MarksCredits: 1POE: 25 Marks

Expt. No.	Experiment Title	Bloom's Taxonomy
1	Draw an E-R Diagram of any organization.	Analyse
2	Reduce above mentioned E-R Diagram into tables	Analyse
3	Normalize any database from first normal form to Boyce-Codd Normal Form (BCNF)	Understand
4	Use DDL Queries to create, alter (add, modify, rename, drop) & drop Tables	Understand
5	Use DML Queries to insert, delete, update & display records of the tables.	Analyze
6	Create table with integrity constraints like primary key, check, not null and unique	Analyze
7	Create table with referential integrity constraints with foreign key, on delete cascade and on delete set null	Understand
8	Display the results of set operations like union, intersections & set difference.	Understand
9	Display the results of Join Operations like cross join, self join, inner join, natural join, left outer join, right outer join and full outer join.	Understand
10	Display the records using Aggregate functions like min, max, avg, sum & count. Also use group by, having clauses	Understand
11	Display the results using String operations.	Apply
12	Demonstrate use of SQL Sub Queries.	Apply
13	Create & Update views (materialized and non-materialized) for any created table.	Apply
14	Create indices using SQL	Apply
15	Study of B+ tree indexing.	Apply

23UGPCC-CSE503T - Computer Algorithms

Teaching Scheme Evaluation Scheme:
Tutorial: 1 Hrs/week ISA: 25 Marks

Credits: 1

	Term Work & Tutorial List
	Algorithm Basics and Performance:
1	• Explain the importance of algorithms and how to analyze their time complexity.
	Solve: Analyze the time complexity of binary search and linear search algorithms.
	Divide and Conquer:
2	• Describe the divide and conquer approach with examples like finding maximum/minimum in an array.
	• Solve: Perform Merge Sort on the array [38, 27, 43, 3, 9, 82, 10].
	Binary Search Algorithm:
3	• Explain binary search with its recursive and iterative forms.
	• Solve: Trace the steps of binary search for finding 43 in the sorted array [10, 20, 30, 40, 43, 50].
	Greedy Method and Knapsack Problem:
4	Explain the greedy method using the fractional knapsack problem.
	• Solve: Given weights and profits, use the greedy approach to maximize profit in fractional knapsack.
	Minimum Spanning Tree Algorithms:
5	Discuss Prim's and Kruskal's algorithms and their applications.
	• Solve: Find MST for a given graph with vertices and edges (provide a simple weighted graph).
	Dynamic Programming Introduction:
6	Explain the concept of overlapping subproblems and optimal substructure.
	• Solve: Use dynamic programming to find the shortest path in a multistage graph (simple example).
	All Pair Shortest Path (Floyd Warshall):
7	Explain Floyd Warshall algorithm and its time complexity.
	Solve: Apply Floyd Warshall to the given adjacency matrix and find shortest paths.
	Tree and Graph Traversal:
8	 Explain BFS and DFS with examples in graphs and binary trees.
	Solve: Perform BFS and DFS traversal on the provided graph and write the traversal order.
	Backtracking Method:
9	Explain backtracking with the N-Queens problem and sum of subsets.
	• Solve: Write steps to place 4 queens on a 4x4 chessboard without conflict.
	Hamiltonian Cycle Problem:
10	Define Hamiltonian Cycle and explain why it is NP-Complete.
	• Solve: Try to find a Hamiltonian cycle in a small given graph (example with 5 vertices).
	NP Problems Overview:
11	Differentiate between P, NP, NP-Complete, and NP-Hard problems with examples.
	Write a short note on why solving NP-Complete problems efficiently is challenging.