

Syllabus Structure and Curriculum under Autonomy

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar An Autonomous Institute

Department of Electronics & Telecommunication Engineering

Vision

To become an academy of excellence in technical education and human resource development.

❖ Mission

- To develop engineering graduates of high repute with professional ethics.
- To excel in academics and research through innovative techniques.
- To facilitate the employability, entrepreneurship along with social responsibility.
- To collaborate with industries and institutes of national recognition.
- To inculcate lifelong learning and respect for the environment.

A Quality Policy

To promote excellence in academic and training activities by inspiring students for becoming competent professionals to cater industrial and social needs.

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

An Autonomous Institute

Department of Electronics & Telecommunication Engineering

PROGRAM EDUCATIONAL OBJECTIVES

Graduates will be able:

- [1] To excel in technical education and research in Electronics and Telecommunication engineering.
- [2] To make the graduate competent with recent technological development in related field.
- [3] To enable the graduates to innovate, design and develop new Electronics and Telecommunication systems.
- [4] To provide excellent academic environment for life long learning.
- [5] To embed the Professional and ethical approach, effective communication and team work.

PROGRAM OUTCOMES:

- **PO1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2**. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3**. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5**. **Modern tool usage**: Create, select, and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and mer diverse teams, and in multi-disciplinary settings.

porsibilities and soms of

a member og reader in

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

An Autonomous Institute

Department of Electronics & Telecommunication Engineering

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi-disciplinary environments.

PO12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES:

After successful Electronics and Telecommunication engineering graduates will be able to:

PSO 1 (Engineering Knowledge and Analysis):

Analyze specific engineering problems relevant to Electronics & Telecommunication Engineering by applying the knowledge of basic sciences, engineering mathematics and fundamentals.

PSO 2 (System Design):

Design Electronics and Telecommunication systems containing devices, software, and hardware using the significant analytical knowledge and modern tools.

PSO 3 (Application of the knowledge on society/environment):

Apply the contextual knowledge of Electronics and Telecommunication Engineering to assess societal, environmental, health, safety, legal and cultural issues with professional ethics and function effectively as an individual or a leader in a team to manage different projects as the process of life-long learning.

SWVSM'S

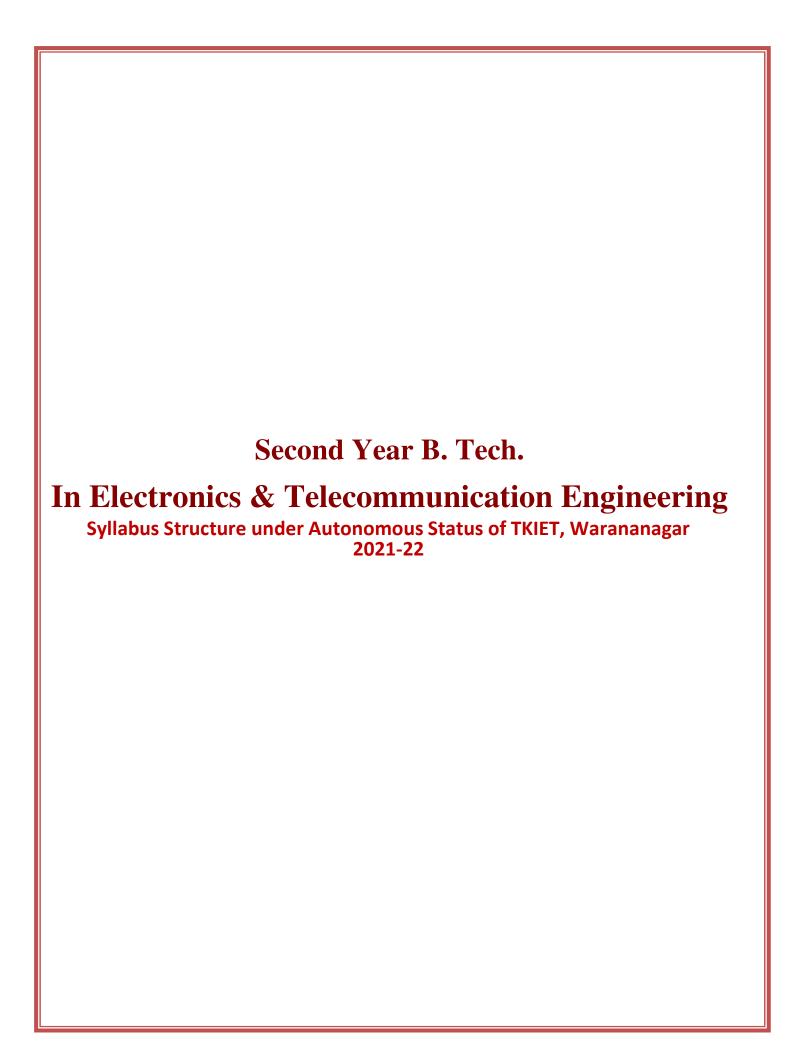
Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

An Autonomous Institute

Abbreviations

Sr. No.	Acronym	Definition				
1	ISE	In-Semester Examination				
2	ISE-I	In-Semester Examination-I				
3	ISE-II	In-Semester Examination-II				
4	ESE	End Semester Examination				
5	ISA	In-Semester Assessment (Term Work)				
6	L	Lecture				
7	T	Tutorial				
8	P	Practical				
9	СН	Contact Hours				
10	С	Credit				

Course/ Subject Categories


Sr. No.	Acronym	Definition				
1	BSC	Basic Science Course				
2	HSC	Humanity Science Course				
3	ESC	Engineering Science Course				
4	PCC	Professional Core Course				
5	OEC	Open Elective Course				
6	MC	Mandatory Course				
7	PEC	Professional Elective Course				
8	PW	Project Work (Mini and Major Project)				
9	II	Industrial Internship				

Course/ Subject Code

M	E	3	0
Branc	ch Code	Semester	Course N

Course Term work and POE Code

M	E	3	0	1	
Bran	ch Code	Semester	Course	Number	T- Term work P- POE A- Audit Course

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

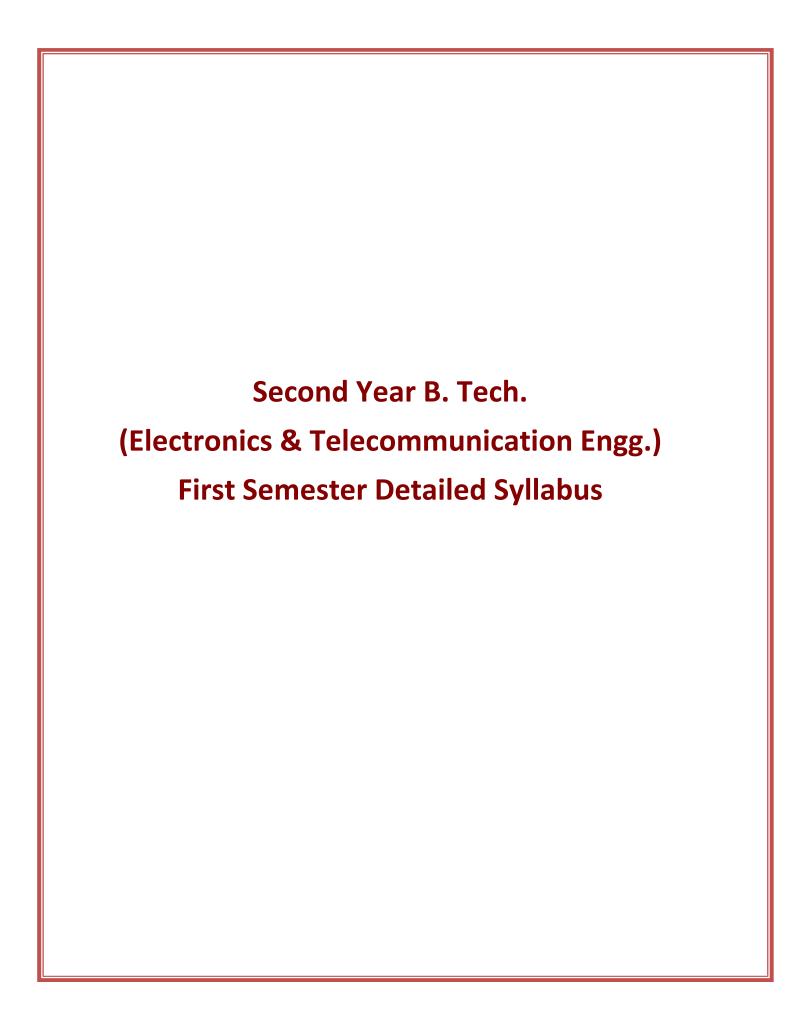
Second Year B. Tech. (Electronics & Telecommunication Engg.) Semester-III

(To be implemented from 2021 - 22) Credit Scheme

			1			d Cred	lit	Examination	& Evalua	tion Scl	neme
Course	Category	Course Title		Ş	Schem	ie	ı			Min for	
Code	Code		L	P	T	СН	C	Components	Marks	Passing	
ETC301	BSC	Engineering Methametics III	3			3	3	ESE	60	24	40
E1C301	ьс	Engineering Mathematics-III	3	1		3	3	ISE	40	16	40
ETC302	ESC	Electronic Devices & Circuits -I	4		4	3	ESE	60	24	40	
L1C302	Loc	Electronic Devices & Circuits -1	7			7	3	ISE	40	16	70
ETC303	ESC	Digital Electronics & Microprocessor	3			3	3	ESE	60	24	40
L10303	Loc	Digital Electronies & Microprocessor	,					ISE	40	16	10
ETC304	ESC	ESC Electrical Circuits 3 3		3	ESE	60	24	40			
								ISE	40	16	
ETC305	ESC	Transducers & Measurements	3			3	3	ESE	60	24	40
								ISE	40	16	
ETC306	ESC	Programming Lab – I (C++ & JAVA)				2	1	ESE	NA	NA	NA
								ISE	NA	NA	
ETC301T	BSC	Engineering Mathematics-III (Tutorial)			1	1	1	ISA	25	10	10
								ISA	25	10	10
ETC302P	ESC	Electronic Devices & Circuits -I Lab		2		2	1	POE	50	20	20
ETC303P	ESC	Digital Electronics & Microprocessor		2		2	1	ISA	25	10	10
ETCSUSP	ESC	Lab		2		2	1	POE	50	20	20
ETC304T	ESC	Electrical Circuits (Tutorial)			1	1		ISA	25	10	10
ETC305P	ESC	Transducers & Measurements Lab		2		2	1	ISA	25	10	10
								ISA	25	10	10
ETC306P	ESC	Programming Lab – I (C++ & JAVA) Lab		2		2	1	POE	50	20	20
ETC307A		Audit Course - III	2			2				-	-
			20	8	2	30	21		800		

Note: In theory examination, there will be separate passing of ESE and ISE.

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar


Second Year B. Tech. (Electronics & Telecommunication Engg.) Semester-IV

(To be implemented from 2021 - 22) Credit Scheme

			1	Teachi	ng and	d Cred	lit	Examination	& Evalua	tion Sc	heme	
Course	Category	Course Title		\$	Schem	ie	1			Min		
Code	Code					СН	C	Components	Marks	Pass	Passing	
ETC401	ECC	Electronic Decision 9 Cincolto II	4			4	2	ESE	60	24	40	
ETC401	ESC	Electronic Devices & Circuits -II	4			4	3	ISE	40	16	40	
ETC402	ESC Communication Engineering 3	3	3	3	ESE	60	24	40				
E1C402	ESC	Communication Engineering	3			3	3	ISE	40	16	40	
ETC403	ESC	Linear Integrated Circuits	3			3	3	ESE	60	24	40	
LICTOS	LSC	Elical integrated circuits	5			3	3	ISE	40	16	40	
ETC404	ESC	Control System Engineering	3			3	3	ESE	60	24	40	
LICIOI	Loc	Control Gystem Engineering	3			3	3	ISE	40	16	10	
ETC405	ESC	Data Structure & Algorithms	3			3	3	ESE	60	24	40	
LICTOS	Loc	Data Structure & Migorithms	3			3	3	ISE	40	16	10	
ETC406	ESC	Programming Lab-II	2			2	1	ESE	NA	NA	NA	
LICTOO	Loc	(Python)						ISE	NA	NA	1 1/1	
EEG (01B	Fac			2				ISA	25	10	10	
ETC401P	ESC	Electronic Devices & Circuits –II Lab		2		2	1	POE	50	20	20	
ETC402P	ESC	Communication Engineering Lab		2		2	1	ISA	25	10	10	
ETC403P	ESC	Linear Integrated Circuits Lab		2		2	1	ISA	25	10	10	
2101031	250	Emour integrated circuits Euro		-		_	-	POE	50	20	20	
ETC404T	ESC	Control System Engineering (Tutorial)			1	1		ISA	25	10	10	
ETC405T	ESC	Data Structure & Algorithms (Tutorial)			1	1		ISA	25	10	10	
ETC406P	ESC	Programming Lab-II		2		2	1	ISA	25	10	10	
E1C400F	ESC	(Python) Lab		<i></i>			1	POE	50	20	20	
ETC407A		Audit Course – IV	2	-1		2				-	-	
			20	08	02	30	20		800			

Note: In theory examination, there will be separate passing of ESE and ISE.

ETC301- ENGINEERING MATHEMATICS - III

Lectures: 3 Hrs/WeekEvaluation SchemeCredit: 3ISE : 40 MarksESE : 60 Marks

	rse Objectives: course aims to:
1	To develop mathematical skills and enhance thinking power of students
2	To give the knowledge to the students of Linear Differential Equations, ,Laplace transforms ,Fourier series, probability, Vector Differential Calculus with an emphasis on the application of solving Engineering Problem.
3	To prepare students to formulate a mathematical model using engineering skills & interpret the solution in real world.

Course	Course Outcomes:								
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy							
CO1	Use of Linear Differential Equations to solve the Electrical Engineering problems.	Understanding, Application							
CO2	Find Laplace transforms of given functions	Understanding							
CO3	Use Laplace and Inverse Laplace to solve linear differential equations	Understanding, Application							
CO4	Develop Fourier series expansion of a function over the given interval.	Understanding							
CO5	Solve basic problems in probability theory, including problems involving the binomial, Poisson, and normal distributions.	Applying							
CO6	Apply knowledge of vector differentiation to find directional derivatives, curl and divergence of vector field.	Understanding							

Description:

Engineering Mathematics course is offered as the basic science course. This course contains Mathematical methods and techniques that are typically used in engineering to solve complex engineering problems. This course has six units namely i) Linear Differential Equations(LDE) and its Applications ii) Laplace Transformand iii) Inverse Laplace Transform and its Applications iv) Fourier Series v) Probability Distribution vi) Vector Differential Calculus

	1	Trigonometric identities and Logarithmic identities		TUTE OF ENGL
Prerequisites:	2	Differentiation and integration formulae		S. T. T.
	3	Basic knowledge of probability.	KO	Autonomous
			/:	Townshield State of the state o

	Course Contents	
Unit No:1	Linear Differential Equations (LDE) and its Applications: 1 Linear Differential equations with constant coefficients. 2 Rules to find complementary function. 3 Methods to find particular Integral (e ^{ax} , sinax or cosax, x ^m , e ^{ax} x ^m ,) 4 Applications of linear differential equations with constant coefficients to Electrical Engineering.	7 Hrs.
Unit No:2	Laplace Transform -I 1 Laplace transform of elementary functions 2 Properties of Laplace transforms 2.1 Linearity Property 2.2 First Shifting property 2.3 Change of scale property 3 Laplace transforms of derivatives and integral. 4 Multiplication by t ⁿ and division by t 5 Evaluation of integrals by Laplace transform.	7 Hrs.
Unit No:3	Inverse Laplace Transform and its Applications: 1 Definition and important formulae 2 First shifting property 3 Inverse Laplace transform by method of partial fraction 4 Convolution theorem (without proof) 5 Inverse Laplace transform of derivatives 6 Solution of Linear differential equation with constant coefficients using Laplace transform	7 Hrs.
Unit No:4	 Fourier Series: Definition, Euler's formulae, Dirichlet's conditions. Fourier Series of periodic function with period 2π Change of interval. Expansions of odd and even functions. Half range series. 	7 Hrs.
Unit No:5	Probability Distribution: 1 Basic definitions, Conditional probability 2 Random variables. 3 Discrete Probability distribution. 4 Continuous probability distribution. 5 Binomial Distribution. 6 Poisson Distribution. 7 Normal Distribution.	7 Hrs.
Unit No:6	Vector Differential Calculus: 1 Differentiation of vectors. 2 Gradient of scalar point function. 3 Directional derivatives. 4 Divergence of vector point function. 5 Curl of a vector point function. 6 Irrotational, Solenoidal and Scalar potential function of a vector field	7 Hrs.

	PO1	DO3	DO2	PO4	DO5	DO6	DO7	DO8	DO0	PO10	DO11	PO12	If applicable		
	POI	POZ	PO3	PO4	PO3	PO6	PO/	PU8	PO9	POIU	POII		PSO1	PSO2	PSO3
CO1	2											1			
CO2	2											1			
CO3	2											1			
CO4	2											1			
CO5	2											1			
CO6	2											1			

Text Boo	oks:
1	Higher Engineering Mathematics, by B. S. Grewal (Khanna Publication Delhi.)

Reference Books:					
1	Advance Engineering Mathematics by Erwin Kreyszig (Wiley India.)				
2	Advanced Engineering Mathematics, by H. K. Das (S. Chand Publication.)				
3	A text book of Applied Mathematics: Vol. I, II and III by J. N. Wartikar & P. N. Wartikar, Vidyarthi Griha Prakashan, Pune.				

ETC302- ELECTRONIC DEVICES & CIRCUITS -I

Lecture: 4 Hrs/WeekEvaluation SchemesCredit: 3ISE : 40 MarksESE : 60 Marks

	Course Objectives: The course aims to:					
1	Provide an introduction and basic understanding of Semiconductor Devices viz. diodes and BJT, JFET.					
2	Provide basic analog electronic circuit design techniques using diodes and bipolar junction transistors and to develop analytical skills.					
3	Develop student ability to apply basic engineering sciences to understand the Operation & analysis of electronic circuits using diodes and bipolar junction transistors.					

Course	Course Outcomes:						
COs	At the end of successful completion of the course the student will be	Blooms					
	able to	Taxonomy					
CO1	Describe and design electronic circuits such as rectifiers & unregulated power supply.	Knowledge, Application					
CO2	Solve the problems of electronic circuit design such as regulated power supply.	Analysis					
CO3	Analyze & Design LPF, HPF, Clipper, Clampers, Multipliers	Knowledge					
CO4	Explain operation of BJT & FET Biasing circuit.	Application					
CO5	Summarize the hybrid model of transistor and analyze the transistor amplifier (CE, CB, and CC) using h-parameters.	Knowledge					
CO6	Analysis of CE Amplifier for low frequency & High frequency response for sinusoidal & square wave input.	Application					

Description:
Electronics Device and Circuit-I course is a core electronics course. This course describes the concept of
electronics circuit design. It gives the concept of different electronics circuit for their detail operation and
working principle. Also, it describes the specifications of devices and its use for different applications.
1 Coming ductor Dhysics

	1	Semiconductor Physics	
Prerequisites:	2	Basic Electronics	
•	3	Electronics Measurement	

	Course Contents	
Unit No:1	Unregulated Power Supplies: Rectifiers: Half wave, full wave: center tap and bridge type, analysis for different parameters: PIV, TUF, efficiency, ripple factor, regulation, form factor etc. Filters: Need of filters, Types: capacitor, inductor, LC, CLC, and Analysis for ripple factor.	8 Hrs.
Unit No:2	Design of unregulated power supply with filter using full wave rectifier. Voltage Regulators: Need of voltage regulator, Stabilization factors, Analysis & Design of Shunt regulator (using Zener diode & BJT), emitter follower regulator, series pass voltage regulator (using BJT), Pre- regulator & Overload protection circuit.	8 Hrs.
Unit No:3	Wave Shaping Circuits: Low pass & high pass RC circuits (analysis for square, step, ramp, exponential input), High pass RC circuit as a differentiator, Low pass RC circuit as integrator. Clipping circuits: diode clippers, transistor clippers, Transfer characteristics, Clamping circuits: Classification, clamping operations, Clamping circuit theorem, practical clamping circuits, and voltage multipliers.	8 Hrs.
Unit No:4	BJT & FET Biasing Introduction to BJT, Need of Biasing, Generalized stability factor derivation, Biasing of CE configuration-Fixed Bias, Collector to Base Bias & Voltage Divider Bias (Analysis & Design of the same with & without Re). Introduction to JFET, Biasing of CS configuration- Fixed Bias, Self Bias (Analysis & Design of the same).MOSFET-EMOSFET & DMOSFET (Working & Characteristics)	8 Hrs.
Unit No:5	Voltage Amplifiers: H-Parameters, Hybrid model for transistor (CE, CB& CC configuration), amplifier equations for Voltage Gain, Current gain, Input resistance & Output resistance taking Rg of source into account.(Numerical are expected)	8 Hrs.
Unit No:6	Frequency Response of Single Stage RC Coupled Amplifier: Low frequency response: Effect of emitter bypass capacitor(CE) & Coupling capacitor(CC), Amplifier response to square wave, percentage Sag calculation, (Numerical are expected) High frequency response: Hybrid π model, Derivation for CE short circuit & resistive current gain cut off cutoff frequency, amplifier high freq. response to square wave, gain bandwidth product, (Numerical are expected). Design of single stage RC coupled amplifier.	8 Hrs.

	DO1	DO3	DO2	DO4	DO5	DO6	DO7	DO9	DO0	DO10	PO11	DO11	PO12	DO12	If applicable PSO1 PSO2 PSO3		
	POI	POZ	PO3	PO4	POS	PO0	PO7	PU	PU9	POIU		PO12		PSO1	PSO2	PSO3	
CO1	3			1				3			3						
CO2			2														
CO3		2							2								
CO4					3					3							
CO5	2		2				1										
CO6												2					

Text Books:				
1	Allen Mottershed, "Electronic devices & circuits", Prentice- Hall India			
2	J. Millman & C. Halkias, "Electronic devices & circuits", Tata McGraw Hill Publication			
3	Dr. R. S. Sedha, "A Text Book of Applied Electronics". S Chand and Company			

Refer	Reference Books:					
1	David A. Bell, "Electronic devices & circuits", Oxford University					
2	Salivahanan,N Suresh kumar,"Electronic devices & circuits",Tata McGraw Hill Publication					
3	Robert L. Boylsted, Louis Nashelsky," Electronic devices & circuit theory", Pearson Education					

ETC303- DIGITAL ELECTRONICS AND MICROPROCESSOR

Lectures: 3 Hrs/WeekEvaluation SchemeCredit: 3ISE : 40 MarksESE : 60 Marks

Course Objectives:					
The cou	arse aims to make the student understand:				
1	The fundamental principles of two-valued logic and various devices used to implement logical operations on variables.				
2	Boolean algebra, Karnaugh maps and its application to the design and characterization of digital circuits.				
3	To analyze logic processes and implement logical operations using combinational logic circuits.				
4	The principles of logic design and use of simple memory devices, flip-flops, and sequential circuits.				

Cours	Course Outcomes:						
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy					
CO1	Use the basic logic gates and various reduction techniques of digital logic circuit.	Remembering					
CO2	Analyze, design and implement combinational logic circuits.	Apply					
CO3	Analyze, design and implement sequential circuits.	Apply					
CO4	Explain microprocessor architecture and its instruction set	Understand					
CO5	Explain interfacing of devices to microprocessor	Understand					
CO6	Design Microprocessor based Systems	Create					

Description:

This is very important core course offered in Electronics and Telecommunication Engineering. Embedded Systems, VLSI Design, Robotics Systems, Communication Systems etc. are using Digital Systems like microprocessors and microcontrollers. Also to design any electronics system digital electronics is required. To understand digital transformation and design any System, this course plays very important role.

Prerequisites: 1 Logic gates, Number systems

	Course Contents	
	FUNDAMENTALS OF DIGITAL ELECTRONICS:	
Unit No:1	Number system and codes and their Arithmetic (Binary, HEX, BCD), Simplification of logical equation using Boolean and De-Morgan's theorem. Introduction to canonical forms, Standard representations for logic functions, k-map representation of logic functions (SOP and POS forms), minimization of logical functions for min-terms and max-terms (up to 4 variables), don't care conditions,	6 Hrs.
	COMBINATIONAL LOGIC:	
Unit No:2	Definition of combinational logic, Design of arithmetic circuits – Adder, subtractor Look ahead carry adder, BCD adder, comparator, parity generator /checker, code converter, Multiplexer, Demultiplexer, Decoder, Encoder, BCD to seven segment decoders	8 Hrs.
	SEQENTIAL LOGIC:	
Unit No:3	1 Bit Memory Cell, Clocked SR, JK, MS J-K flip flop, D and T flip-flops. Use of preset and clear terminals, hold and setup time and metastability. Excitation Table for flip flop, Conversion of flip flops, Typical data sheet specifications of Flip flop Application of Flip flops. Registers, Shift registers, Counters-Asynchronous and synchronous counter design,	6 Hrs.
	DIGITAL LOGIC FAMILIES AND SEMICONDUCTOR MEMORIES:	
Unit No:4	Classification and Characteristics of digital Logic Families: TTL logic, CMOS logic. Interfacing CMOS and TTL ,Memory organization and operation, expanding memory size, Classification and characteristics of memories, RAM ROM, EPROM, EPROM, NVRAM, SRAM, and DRAM	6 Hrs.
	FUNDAMENTALS OF MICROPROCESSORS:	
Unit No:5	8085 architecture, programming model: pin functions, Addressing modes, Instruction set, Introduction to Timing diagram-T-state, Timing diagram of instructions stack operations and subroutines, Interrupt structure	8 Hrs.
	PROGRAMMING AND INTERFACE:	
Unit No:6	Assembly language programming, Basic Interfacing Concepts, Introduction to Interfacing (8255, LED, 7-Seg. Display, Stepper motor, Relay)	6 Hrs.

	PO1	DO3	DO2	DO4	DO5	DO6	DO7	DO	DOO	DO10	DO11	PO12	If applicable		
	POI	POZ	PO3	PO4	POS	PO0	PO7	PU	PO9	POIU	POH		PSO1	PSO2	PSO3
CO1	2	2											1	3	2
CO2	1		3										3	3	3
CO3		2		3	3								2	1	3
CO4	1												2	1	2
CO5	1		2										3	3	2
CO6				2	3								1	3	1

Text Books:						
1	R.P. Jain, "Modern Digital Electronics", Tata McGraw Hill Publication, 3 rd Edition					
2	Anand Kumar, "Fundamentals of Digital Circuits", Prentice Hall of India, 1 st Edition.					
3	Ramesh Gaonkar, "Microprocessor Architecture Programming and Application with 8085", Penram International Publishing India.					

Reference Books:						
1	M. Morris Mano, "Digital Logic and Computer Design", Prentice Hall of India, 4 th Edition.					
2	K. Udaykumar, S Umashankar, "The 8085 Microprocessor-Architecture & programming and Interfacing", Pearson Publication.					
3	Intel Data sheet (8085)					

ETC304- ELECTRICAL CIRCUITS

: 3 Hrs/Week Lectures **Evaluation Scheme** Credit : 3 **ISE :** 40 Marks **ESE**: 60 Marks

Cou	Course Objectives:						
The	course aims to make the student understand :						
1	To Identify and draw network graphs and their parts.						
2	To analyze DC & AC circuits using network theorems.						
3	The types of two port network and their analysis.						
4	The constructional details, characteristics, features and application areas of various types of electric motors.						

Cou	Course Outcomes:							
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy						
CO1	Identify and apply the rules of network topology to various electric network	Understanding & Applying						
CO2	Analyze the simple DC and AC circuit with circuit simplification techniques.	Analyzing						
CO3	Formulate & Evaluate network parameters for given network and analyze the given network using Laplace Transform.	Evaluating						
CO4	Understand & explain construction, working and applications of all types of motors.	Understanding						

Description:

The course has been designed to introduce fundamental principles of circuit theory commonly used in engineering applications. It aims to establish a firm understanding of the laws of electric circuit which develops a working knowledge of the methods of analysis used most frequently in further topics of electronics engineering. The course deals with the DC and AC circuit analysis using network theorems, two port network

Prerequisites:	1	Basic Electrical Engineering	
motors.			
& network fund	ctions.	The course focuses on construction a	and working principles of different dc and ac
engineering. The	Cour	se deals with the DC and AC circuit and	arysis using network incorems, two port network

	Course Contents	
Unit No:1	FUNDAMENTALS OF NETWORK THEORY: Tree and Co-tree, Incidence Matrix, Tie-set Matrix, Cut-set Matrix, Mesh Analysis, Nodal Analysis. Series & parallel connection of passive elements(R,L,C)	6 Hrs.
Unit No:2	DC & AC CIRCUIT ANALYSIS USING NETWORK THEOREMS: Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem, Duality theorem, Millman's Theorem. STEADY STATE ANALYSIS: Superposition Theorem, Thevenin's Theorem, Maximum Power Transfer Theorem.	8 Hrs.
Unit No:3	TWO PORT NETWORKS: Open circuit impedance (Z) parameters, Short circuit admittance (Y) parameters, Hybrid (H) parameter, Transmission parameters (ABCD), Interrelation of different parameters, Interconnections of two port network, T & pi representation. NETWORK FUNCTIONS: Transfer functions of two port network, poles and zeros, time domain response from pole zero plot.	8 Hrs.
Unit No:4	FILTERS: Introduction, Classification, Low pass, High pass, Band pass & Band reject filter, Design & analysis of constant K, M derived & composite filters (low pass, high pass, band pass & band stop filters): T & Pi	8 Hrs.
Unit No:5	DC MOTORS: Construction, Working, Types, Back EMF, Speed equation, Torque equation, Speed torque characteristics of Dc shunt and series motor, Speed control of D.C. Shunt and series motor, Need of starter, 3 point starter, 4 point starter. (Numerical treatment on speed control methods)	6 Hrs.
Unit No:6	SPECIAL PURPOSE MOTOR: Construction, Working principle, characteristics and applications of Single phase permanent split capacitor type Induction motor, AC servo motor, DC servo motor, Stepper motor (VR type and PM type) and BLDC motor.	8 Hrs.

	DO1	DO3	DO2	DO4	DO5	DO6	DO7	DO	DOO	DO10	DO11	DO12	If applicable PSO1 PSO2 PSO3		
	POI	POZ	PO3	PO4	POS	POO	PO7	PU	PO9	POIU	POH	PO12	PSO1	PSO2	PSO3
CO1	3	2	1		1									1	
CO2	3	2		1											
CO3	3	3	1												2
CO4	2	1													1

Text Bool	Text Books:						
1	A. Sudhakar ,Shyammohan S.Palli, "Circuit & Network – Analysis & Synthesis", Tata McGraw Hill Publication, III rd Edition						
2	A.Chakrabarti, "Circuit Theory (Analysis & Synthesis)", Dhanpat Rai & Co, III rd Edition.						
3	B. L. Theraja, "A Text book of Electrical Technology", Vol-II, S. Chand publication, 1st Edition.						
4	I.J.Nagrath & D.P.Kothari, "Electric Machines", TMH, 2 nd Edition						

Reference Books:						
1	Ravish R Singh, "Network Analysis & Synthesis", McGraw-Hill Education.					
2	U.A.Bakshi, "Electrical Technology", Technical Publication Pune, 4 th Edition ,2009.					
3	V K Mehta and Rohit Mehta, "Principles of Electrical Machines", S Chand Publications					

ETC305- TRANSDUCERS AND MEASUREMENTS

Lectures: 3 Hrs/WeekEvaluation SchemeCredit: 3ISE : 40 MarksESE : 60 Marks

	Course Objectives: The course aims to:						
1	Provide introduction to different types of Transducers with their classification, construction & application and Provide knowledge of different sensors and their applications						
2	Provide knowledge of signal conditioning and instrumentation system and Provide basic knowledge of measurement system						
3	Provide basic understanding of different Electronic instruments and Provide knowledge of different types of bridges						

Course Outcomes:						
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy				
CO1	Student will able to select appropriate transducer and sensors as per required	Apply				
CO2	Students will get acquainted with different DAS	Analyze				
CO3	Student will be able to design instrumentation system	Analyze				
CO4	Student will able to understand measurement basics and select proper instrument for particular measurement of electrical parameter	Apply				

Description:

This course aims to impart fundamental knowledge of different types of sensors and Transducers .and Applied knowledge of signal conditioning Instrumentation amplifiers S,Data acquisition system, Different Display devices Signal generators ,Analyzers Different dc and AC Bridges.. Students will be expected to communicate knowledge to society and industry.

Prerequisites:	1	Students should have knowledge of Fundamental Electronics and different components,
•	2	Students should have knowledge of laws in basic electronics.

	Course Contents	
Unit No:1	Introduction to Measurement: Introduction, Performance Characteristics, Static Characteristics, Errorin Measurement, Types of Static Error, Sources of Error, Dynamic Characteristics, Statistical Analysis, Electrical Standards, Atomic Frequency and Time Standards.	7 Hrs.
Unit No:2	Transducers: Definition, Various Types of Transducers, Classification of Transducers, Selection Factors and General Applications of Transducers, Detailed Study of Transducers: (i) Displacement (ii) Flow (iii) Pressure (iv) Temperature (v) Force and Torque (vi) Sound Transducer, Hall Effect Transducers, Digital Transducers: Shaft Encoder	7 Hrs.
Unit No:3	Sensors: Proximity Sensors, optical Sensors, IR sensors, Piezo – electric sensors Smart Sensors: Fiber optic sensors, Film sensors, Nano sensors, Electrochemical sensors, biosensors, MEMS	6 Hrs.
Unit No:4	Bridges: Measurement of Resistance with Bridges, Wheatstone's Bridge, Kelvin Double Bridge, AC Bridges such as Haye's Bridge, Wein Bridge, Maxwell's-Wein Bridge, Maxwell' L/C Bridge, Descourty's Bridge& Schering Bridge	6 Hrs.
Unit No:5	Signal Conditioning & Data Acquisition System: Introduction, AC & DC Signal Conditioning, , Instrumentation Amplifier, Isolation And Programmable Gain Amplifier, Grounding And Shielding, principles and working of different types of ADC and DAC. Digital voltmeters- Introduction, Types of DVM, general specifications of DVM, digital multimeter, digital measurements of time, digital frequency meter, Q meter.	7 Hrs.
Unit No:6	Measurement & Display Devices: CRO: Dual Beam, Dual Traces Sampling, Digital storage, measurement of phase and frequency using Lissajous pattern, CRO probes: active, passive, current, attenuators, LED, LCD, Graphics Display, Signal Generators, Function generators. Spectrum analyzer, logic analyzer	7 Hrs.

														applicab	le
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2		2	1			1	-	1		3	3	2	1	2
CO2	1	2	2	1	1	1	1	1				1	2	1	3
CO3	1	1	3	3	1					1		1	1	1	3
CO4		2	3			2	1			2		1	2	2	2

Text Books:				
1	A.K.Sawhney, "A course in Electrical, Electronics measurement and Instrumentation",			
2	H. S. Kalsi, "Electronic Instrumentation", McGraw-Hill, 3 rd Edition			

Reference	Reference Books:			
1	Welfrick Cooper, "Electronic Instrumentation and Measurement Techniques",			
2	David A Bell, "Electronic Instrumentation and Measurements", Oxford, 3 rd Edition			
3	James W Dally, "Instrumentation for Engineering Measurements", Wiley,2 nd Edition			

ETC306- PROGRAMMING LAB.-I (C++ & JAVA)

Lectures: 2 Hrs/WeekEvaluation SchemeCredit: 1ISE : NA

ESE : NA

	Course Objectives: The course aims to:			
1	To understand object oriented programming concept			
2	To understand the implementations of concepts of objects in C++ and Java			
3	To understand how to develop program in C++ and Java.			

Course (Course Outcomes:					
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy				
CO1	Write program using C++.	Knowledge, Application				
CO2	Write program using Java	Knowledge, Application				
CO3	Develop small application using object oriented program in C++	Knowledge, Analysis				
CO4	Develop small application using object oriented program in Java.	Knowledge, Analysis				

Description:

Programming Lab-I.(C++,Java) course is offered as Basic Programming course. Student should get basic knowledge of programming in C++ & Java which will be applicable in software industries.

Prerequisites:	1	C Programming
	2	Mathematics
	3	Basics of Operating system
	4	Basics of Object Oriented Programming Language

	Course Contents	
Unit No:1	Review of C Programming Basic programming, Data types, Operators, loops, conditional statements, functions, structures, pointers. Introduction To Object Oriented Programming: Difference between procedure oriented programming and object oriented programming, basic concepts and features of object oriented programming, structures and classes, declaration of class, member functions, defining the object of class, accessing member of class, array of class objects.	4 Hrs.
Unit No:2	Overloading: Function overloading, assignment operator overloading, binary operator overloading, unary operator overloading. Inheritance: Introduction, Single Inheritance, Types Of Base Classes- Direct, Indirect, Array Of Class Object And Single Inheritance, Multiple Inheritance.	4 Hrs.
Unit No:3	Constructors Constructors- copy constructor, default constructors, destructors, inline member function, friend function, dynamic memory allocation. Polymorphism: Polymorphism, constructor under inheritance, destructor under inheritance, virtual destructors, virtual base classes.	4 Hrs.
Unit No:4	Introduction to Java Programming: Java Programming Environment, Source File Declaration Rules, Comments, Data Types, Variables, Operators, Strings, Input and Output, Control Flow, Big Numbers, Array. Object-Oriented Programming Concepts, Declaring Classes, Declaring Member Variables, Defining Methods, Constructor, Passing Information to a Method or a Constructor, Creating and using objects, Controlling Access to Class Members, Static Fields and Methods, this keyword, Object Cloning, Class Design Hints.	4 Hrs.
Unit No:5	Inheritance, Interface and Packaging: Inheritance: Definition, Super classes, and Subclasses, Overriding and Hiding Methods, Polymorphism, Inheritance Hierarchies, Super keyword, Final Classes and Methods, Abstract Classes and Methods, casting, finalization and garbage collection. Interfaces: Defining an Interface, Implementing an Interface, Using an Interface as a Type, Evolving Interfaces, and Default Methods. Packages: Class importing, Creating a Package, Naming a Package, Using Package Members, Managing Source and Class Files. Developing and deploying (executable) Jar File.	4 Hrs.
Unit No:6	Exception and I/O Streams: Exception: Definition, Dealing with Errors, The Classification of Exceptions, Declaring Checked Exceptions, Throw an Exception, Creating Exception, Catching Exceptions. I/O Streams: Byte Stream – Input Stream, Output Stream, Data Input Stream, Output Stream, File Input Stream.	Hrs.

Text Books:				
1	Cay Horstmann and Gary Cornell, "Core Java- Volume I Fundamentals", Pearson, 8 th Edition			
2	Cay Horstmann and Gary Cornell. "Core Java- Volume II Advanced Features", Pearson, 8 th Edition			
3	E.Balguruswamy, "Programming with C++",McGraw Hill, 8th Edition			

Reference Books:			
1	Herbert Schildt, "JAVA-The Complete Reference", McGraw Hill, Oracle Press 9 th Edition		
2	Eric Freeman, Elisabeth Robson, Bert Bates Kathy, Sierra O, "Head First Java", Reilly Publication 3 rd Edition		
3	E.Balguruswamy, "Programming with ANSI C", McGraw Hill, 8th Edition		

ETC301T- ENGINEERING MATHEMATICS – III (Tutorial)

Tutorial: 1 Hr/WeekEvaluation SchemeCredit: 1ISA : 25 Marks

	Course Objectives: The course aims to:			
1	To develop mathematical skills and enhance thinking power of students			
2	To give the knowledge to the students of Linear Differential Equations, ,Laplace transforms ,Fourier series, probability, Vector Differential Calculus with an emphasis on the application of solving Engineering Problem.			
3	To prepare students to formulate a mathematical model using engineering skills & interpret the solution in real world.			

Course	Course Outcomes:						
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy					
CO1	Use of Linear Differential Equations to solve the Electrical Engineering problems.	Understanding, Application					
CO2	Find Laplace transforms of given functions	Understanding					
CO3	Use Laplace and Inverse Laplace to solve linear differential equations	Understanding, Application					
CO4	Develop Fourier series expansion of a function over the given interval.	Understanding					
CO5	Solve basic problems in probability theory, including problems involving the binomial, Poisson, and normal distributions.	Applying					
CO6	Apply knowledge of vector differentiation to find directional derivatives, curl and divergence of vector field.	Understanding					

Description:

Engineering Mathematics course is offered as the basic science course. This course contains Mathematical methods and techniques that are typically used in engineering to solve complex engineering problems. This course has six units namely i) Linear Differential Equations(LDE) and its Applications ii) Laplace Transformand iii) Inverse Laplace Transform and its Applications iv) Fourier Series v) Probability Distribution vi) Vector Differential Calculus

	1	Trigonometric identities and Logarithmic identities	
Prerequisites:	2	Differentiation and integration formulae	
	3	Basic knowledge of probability.	OF SU
			- 101 - 100 V

Autonomou

Tutorials:					
Sr. No.	Title of Tutorial				
1	Solution of Linear differential equation with constant coefficient, Method of P. I. e^{ax} , $sinax$ or $cosax$, x^m				
2	Solution of Linear differential equation with constant coefficient, Method of P. I. $e^{ax}x^m$, and Application				
3	Laplace Transform and its Properties				
4	Inverse Laplace Transform by Shifting Property, Partial Fraction				
5	Inverse Laplace Transform by Convolution Theorem and Application				
6	Expansion of $F(x)$ in $(0,2\pi)$, $(-\pi,\pi)$ as a Fourier Series				
7	Expansion of $f(x)$ with period other than 2π and Half rang Series				
8	Probability Distribution				
9	Divergence and Directional derivatives				
10	Irrotational, Solenoidal and Scalar potential function of a vector field				

ETC302P- ELECTRONIC DEVICES & CIRCUITS -I LAB

Practical : 2 Hrs/Week Evaluation Scheme
Credit : 1 ISA : 25 Marks
POE : 50 Marks

Cou	Course Objectives:					
The	course aims to:					
1	Provide an introduction and basic understanding of Semiconductor Devices viz. diodes and BJT, JFET.					
2	Provide basic analog electronic circuit design techniques using diodes and bipolar junction transistors and to develop analytical skills.					
3	Develop student ability to apply basic engineering sciences to understand the Operation & analysis of electronic circuits using diodes and bipolar junction transistors.					

Course Outcomes:						
COs	At the end of successful completion of the course the student will be	Blooms				
COS	able to	Taxonomy				
CO1	Describe and design electronic circuits such as rectifiers & unregulated power supply.	Knowledge, Application				
CO2	Solve the problems of electronic circuit design such as regulated power supply.	Analysis				
CO3	Analyze & Design LPF, HPF, Clipper, Clampers, Multipliers	Knowledge				
CO4	Explain operation of BJT & FET Biasing circuit.	Application				
CO5	Summarize the hybrid model of transistor and analyze the transistor amplifier (CE, CB, and CC) using h-parameters.	Knowledge				
CO6	Analysis of CE Amplifier for low frequency & High frequency response for sinusoidal & square wave input.	Application				

Description:							
Electronics Device and Circuit-I course is a core electronics course. This course describes the concept of							
electronics circ	electronics circuit design. It gives the concept of different electronics circuit for their detail operation and						
working princip	working principle. Also, it describes the specifications of devices and its use for different applications.						
	1	Semiconductor Physics					
Prerequisites.							

Prerequisites:

1 Semiconductor Physics

2 Basic Electronics

3 Electronics Measurement

List of Experiments

Minimum 09 experiments + 01 Simulation:

Sr. No.	Name of the experiment	Hrs.	Cognitive levels of attainment as per Bloom's
1	Design and study of Low pass filter a. Frequency response (sinusoidal) b. integrator (Square wave input)	2	Knowledge
2	Design and study of High pass filter a. Frequency response (sinusoidal) b. Differentiator (Square wave input)	2	Knowledge
3	Analysis of different types of clipper circuits.	2	Analysis
4	Analysis of different types of clamping circuits.	2	Analysis
5	Study of full wave rectifier with capacitive filter.	2	Knowledge
6	Study of full wave rectifier with inductive filter.	2	Knowledge
7	Design and analysis of zener shunt regulator	2	Knowledge
8	Design and analysis of transistorized shunt regulator	2	Application
9	Demonstration of emitter follower regulator	2	Application
10	Demonstration of series pass voltage regulator	2	Application
11	Determination of H-parameter for CE configuration using input and output characteristics.	2	Application
12	Simulation of FWR using C-filter	2	Application
13	Simulation of Single stage RC-Coupled Amplifier	2	Application
14	PCB Design a. Design of FWR (Different output voltages for different groups) with C filter. b. Design of Single Stage RC Coupled Amplifier (Different voltage Gain for different groups).	To be Completed in Extra Time	Knowledge Application

	DO1	DO2	DO3	DO4	DO5	DO6	DO7	DO8	DO0	DO10	PO11	DO12	If applicable		
	POI	POZ	PO3	PO4	POS	POO	PO7	108	PU9	POIO	POII	PO12	PSO1	PSO2	PSO3
CO1	3			1				3			3				
CO2			2												
CO3		2							2				_		
CO4					3					3			TUT	E OF EA	G
CO5	2		2				1						35		TE.
CO6												2	Au	onomo	12

ETC303P- DIGITAL ELECTRONICS AND MICROPROCESSOR LAB

Practical : 2 Hrs/Week Evaluation Scheme
Credit : 1 ISA : 25 Marks
POE : 50 Marks

Course	Course Objectives:					
The cou	arse aims to make the student understand:					
1	The fundamental principles of two-valued logic and various devices used to implement logical operations on variables.					
2	Boolean algebra, Karnaugh maps and its application to the design and characterization of digital circuits.					
3	To analyze logic processes and implement logical operations using combinational logic circuits.					
4	The principles of logic design and use of simple memory devices, flip-flops, and sequential circuits.					

Course Outcomes:					
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy			
CO1	Use the basic logic gates and various reduction techniques of digital logic circuit.	Remembering			
CO2	Analyze, design and implement combinational logic circuits.	Apply			
CO3	Analyze, design and implement sequential circuits.	Apply			
CO4	Explain microprocessor architecture and its instruction set	Understand			
CO5	Explain interfacing of devices to microprocessor	Understand			
CO6	Design Microprocessor based Systems	Create			

Description:

This is very important core course offered in Electronics and Telecommunication Engineering. Embedded Systems, VLSI Design, Robotics Systems, Communication Systems etc. are using Digital Systems like microprocessors and microcontrollers. Also to design any electronics system digital electronics is required. To understand digital transformation and design any System, this course plays very important role.

Prerequisites: 1	Logic gates, Number systems
-------------------------	-----------------------------

List of Experiments

Minimum 10 experiments:

		,	
Sr. No.	Name of the experiment	Hrs.	Cognitive levels of attainment As per Bloom's
1	Realization of basic gates using universal gates	2	Knowledge
2	Design of Half adder and full adder using logic gates	2	Experiment
3	Design of Half subtractor and full subtractor using logic gates	2	Experiment
4	Design of 8:1 MUX using IC 74151	2	Demonstrate
5	Design 1:8 DEMUX using IC 74138	2	Experiment
6	Study of basic gates using TTL and CMOS IC	2	Describe
7	Study of D FF and JK FF	2	Describe
8	Design and test counter using Flip-flop	2	Demonstrate
9	Design and test MOD 4 counter using Flip-flop	2	Construct
10	Experiment Based on Arrays:- (Minimum one) Exchange, Addition, Finding Minimum / Maximum, Ascending /Descending, etc	2	Understand
11	Experiment Based on Arithmetic and Logical Operation:- (Minimum one) Multi-digit Addition, Multiplication / Division, Finding Even / Odd Numbers, Factorial, Fibonacci Series	2	Understand
12	8255 Based Experiments: (Minimum one) Display interface using 8255, Stepper motor interface, ADC, DAC	2	Apply

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		
													PSO1	PSO2	PSO3
CO1	2	2											1	3	2
CO2	1		3										3	3	3
CO3		2		3	3								2	1	3
CO4	1												2	1	2
CO5	1		2									·	3	3	2
CO6				2	3								1	3	1

ETC304T- ELECTRICAL CIRCUITS (Tutorial)

Tutorial : 1 Hr/Week Evaluation Scheme Credit : NA ISA : 25 Marks

Cou	Course Objectives:					
The	The course aims to make the student understand:					
1	To Identify and draw network graphs and their parts.					
2	To analyze DC & AC circuits using network theorems.					
3	The types of two port network and their analysis.					
4	The constructional details, characteristics, features and application areas of various types of electric motors.					

Cour	Course Outcomes:					
COs	At the end of successful completion of the course the student will be	Blooms				
	able to	Taxonomy				
CO1	Identify and apply the rules of network topology to various electric	Understanding & Applying				
	network					
CO2	Analyze the simple DC and AC circuit with circuit simplification	Analyzing				
	techniques.					
CO3	Formulate & Evaluate network parameters for given network and analyze the given network using Laplace Transform.	Evaluating				
COS	analyze the given network using Laplace Transform.					
CO4	Understand & explain construction, working and applications of all	Understanding				
	types of motors.	Understanding				

Description:

The course has been designed to introduce fundamental principles of circuit theory commonly used in engineering applications. It aims to establish a firm understanding of the laws of electric circuit which develops a working knowledge of the methods of analysis used most frequently in further topics of electronics engineering. The course deals with the DC and AC circuit analysis using network theorems, two port network & network functions. The course focuses on construction and working principles of different dc and ac motors.

111010101			
Prerequisites:	1	Basic Electrical Engineering	THE OF PUR

Tutorials:					
Sr. No.	Title of Tutorial				
1	Exercise based on KVL ,KCL				
2	Finding equivalent resistance of network using various methods				
3	Exercise based on network topology				
4	Application of superposition theorems for DC circuit				
5	Application of Thevenin's theorem and Norton's theorem for DC circuit				
6	Application of network theorems for AC circuits				
7	Exercise based on two port parameters.				
8	Design of constant – K filters.				
9	Design of m- derived filters				
10	Exercise based on fundamentals of DC motors				

ETC305P- TRANSDUCERS AND MEASUREMENTS LAB

Practical : 2 Hrs/Week Evaluation Scheme
Credit : 1 ISA : 25 Marks
POE : NA

Course Objectives: The course aims to:					
1	Provide introduction to different types of Transducers with their classification, construction & application and Provide knowledge of different sensors and their applications				
2	Provide knowledge of signal conditioning and instrumentation system and Provide basic knowledge of measurement system				
3	Provide basic understanding of different Electronic instruments and Provide knowledge of different types of bridges				

Course Outcomes:					
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy			
CO1	Student will able to select appropriate transducer and sensors as per required	Apply			
CO2	Students will get acquainted with different DAS	Analyze			
CO3	Student will be able to design instrumentation system	Analyze			
CO4	Student will able to understand measurement basics and select proper instrument for particular measurement of electrical parameter	Apply			

Description:

This course aims to impart fundamental knowledge of different types of sensors and Transducers .and Applied knowledge of signal conditioning Instrumentation amplifiers S,Data acquisition system, Different Display devices Signal generators ,Analyzers Different dc and AC Bridges.. Students will be expected to communicate knowledge to society and industry.

Prerequisites:	1	Students should have knowledge of Fundamental Electronics and different components,					
	2	Students should have knowledge of laws in basic electronics.					

List of Experiments

Minimum 10 experiments:

Sr. No.	Name of the experiment	Hrs.	Cognitive levels of attainment As per Bloom's
1	To Study of Extension range of Voltmeter and Milliameter	2	Knowledge
2	To Study of Linear displacement using LVDT.	2	Knowledge, Application
3	To Study Characteristic of NTC Thermistor.	2	Knowledge, Application
4	To Study displacement measurement using LDR.	2	Knowledge, Application
6	To Study Maxwells Bridge	2	Analysis
7	To Study Thermocouple characteristics.	2	Knowledge
8	To Study Strain Gauge	2	Knowledge, Evaluation
9	To Study Frequency and Phase measurement using Lissajous figure.	2	Knowledge, Analysis
10	To Study Capacitance Bridge using VLAB	2	Analysis
11	To Study Hays Bridge using VLAB	2	Analysis
12	To Study Wheat Stones Bridge using VLAB	2	Analysis

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
														PSO1	PSO2	PSO3
CO	D1	2		2	1			1				3	3	2	1	2
CC	02	1	2	2	1	1	1	1	1				1	2	1	3
CC	D 3	1	1	3	3	1					1		1	1	1	3
CC	D4		2	3			2	1			2		1	2	2	2

ETC306P- PROGRAMMING LAB.-I (C++ & JAVA) LAB.

Practical : 2 Hrs/Week Evaluation Scheme
Credit : 1 ISA : 25 Marks
POE : 50Marks

	rse Objectives: course aims to :
1	To understand object oriented programming concept
2	To understand the implementations of concepts of objects in C++ and Java
3	To understand how to develop program in C++ and Java.

Course (Course Outcomes:								
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy							
CO1	Write program using C++.	Knowledge, Application							
CO2	Write program using Java	Knowledge, Application							
CO3	Develop small application using object oriented program in C++	Knowledge, Analysis							
CO4	Develop small application using object oriented program in Java.	Knowledge, Analysis							

Description:

Programming Lab-I.(C++,Java) course is offered as Basic Programming course. Student should get basic knowledge of programming in C++ & Java which will be applicable in software industries.

	1	C Programming
Prerequisites:	2	Mathematics
	3	Basics of Operating system
	4	Basics of Object Oriented Programming Language

List of Experiments

(Minimum 09 experiments + 01 Mini Project compulsory):

Sr. No.	Name of the experiment	Hrs.	Cognitive levels of attainment As per Bloom's
1	Develop a Program for implementation of simple arithmetic operations	2	Knowledge, Application
2	Develop a Program for implementation of array using a. One-dimensional array b. Multi-dimensional array	2	Knowledge, Application
3	Develop a Program for implementation of classes and Objects	2	Knowledge, Application
4	Develop a Program for implementation of types of constructor a. Default constructor b. Parameterized constructor c. Copy constructor.	2	Knowledge, Analysis
5	Develop a Program for implementation of polymorphism	2	Knowledge, Application
6	Develop a Program for implementation of Friend Functions in Class	2	Knowledge Analysis
7	Develop a Program for implementation of types of inheritance a. Single level Inheritance b. Multi-level Inheritance c. Multiple Inheritance d. Hybrid Inheritance e. Hierarchical inheritance.	2	Knowledge Analysis
8	Develop an Object oriented Program for above experiment 2-4 using Java	2	Knowledge, Analysis
9	Develop an Object oriented Program to Insert the Number in an Array using Java	2	Knowledge, Analysis
10	Develop an Object oriented program on Linked list using Java	2	Knowledge, Application
11	Develop an Object oriented program on Linked list using Java	2	Knowledge, Application
12	Develop an Object oriented program to Perform Linear or binary search using Java	2	Knowledge, Application
13	Develop an Object oriented program to implement stack using Java	2	Knowledge, Application
14	Mini Project	2	Knowledge, Application

	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	KONE	Autonampligation)[2] S Q 3
CO1	3	3	1	1	1					1			93/2	Transmagar	[5]
CO2	3	3	1	1	1					1			/	<i>i</i>	*/
CO3	2	3	1	1	1					1				4 YOU	
CO4	2	3	1	1	1					1					

ETC307A- AUDIT COURSE-III [ENVIRONMENTAL STUDIES]

Lectures: 2 hrs / week

Credits: Non-Credit

ISE: NA

Audit Point: 2

Course	Course Objectives:							
The cou	arse aims to:							
1	To understand environmental concepts							
2	To understand the pollution causes and environment protection methodologies							
3	To understand biodiversity and social issues of environment							

Cours	Course Outcomes:							
COs	Upon guagassful completion of this course the students will be able to	Blooms						
COS	Upon successful completion of this course, the students will be able to:	Taxonomy						
CO1	Relate the interdependency of environmental components	Analyzing						
CO2	Identify the environmental problems and prevent environmental pollution	Understanding						
CO3	Interpret impacts of waste on environmental components	Applying						
CO4	Analyze environmental change and its social impacts	Analyzing						

Description:

The syllabus of Environmental Studies provides an integrated, quantitative and interdisciplinary approach to the study of environmental systems. The students of Engineering undergoing this course would develop a better understanding of human relationships, perceptions and policies towards the environment and focus on design and technology for improving environmental quality. Their exposure to subjects like understanding of earth processes, evaluating alternative energy systems, pollution control and mitigation, natural resource management and the effects of global climate change, shall help the students to bring a systems approach to the analysis of environmental problems.

	Course Contents	
Unit No:1	Ecology: Ecosystem, Ecological Pyramids, Food chain, food web, Ecological succession, Natural Resources and Associated Problems. Forest resources, Water resources, Mineral resources, Food resources, Energy resources, Land resources Role of individuals in conservation of natural resources.	4 Hrs.
	Pollution: Water pollution: causes, effects, control, drinking water quality standards, Arsenic,	
	lead, cadmium, chromium, fluoride contamination & its effects, water treatment, wastewater treatment	
Unit No:2	Air pollution: Causes, effects, control, Air pollution controlling equipments, Air quality standards, National air quality index, vehicular emission, alternative fuels, indoor air pollution, Thermal inversions, Photochemical Smog and Acid Precipitation Noise pollution: Causes, effects, control, noise standards recommended by CPCB,	10 Hrs.
	Environmental Protection Act, Air (Prevention and Control of Pollution) Act. Water (Prevention and control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act and International and National efforts for Environmental Protection	
	Waste management: Solid waste management, biomedical waste management, E waste, plastic waste	
Unit No:3	management, Hazardous waste management, carbon footprint, Recycling of waste, Role of Central Pollution Control Board (CPCB),State Pollution Control Board, Role of NGO's .	4 Hrs.
Unit No:4	Social Issues and Environment: Global Warming, Ozone layer depletion, urban problems related to energy, Alternative energy sources, Evolution of Sustainable development: timeline, Evolution of green movements in India, Disaster management: Flood, Earthquakes, Cyclones, Landslides, Draught, Tsunami etc., Swachh Bharat Mission, Role of Information technology in Environment and human health.	6 Hrs.

	DO1	DO2	DO3	DO4	DO5	DO6	DO7	DO8	PO0	PO10	PO11	DO12	If applicable			
	POI	PO2	103	PU4	PO3	100	PO/	100	PO9	PO10	POII	PO12	PSO1	PSO2	PSO3	
CO1	3	1												1		
CO2	3	2		1												
CO3	3	2	1										TUTE	OF ENG	1	
CO4	2	1											Autor		Erg 1	

Text B	Books:
1	Agarwal K.C.,2001 "Environmental Biology", Nidi publication ltd., Bikaner
2	D.K.Asthana, Meera Asthana, "A Textbook of Environmental Studies", S. Chand Publication Revised edition, 2006.
3	S. Deswal & A. Deswal, "Basic course in environmental Studies", Dhanpat Rai & Co Ltd., Delhi, Second revised edition, 2009.

	Eldon D Enger, Bradley F. Smith, "Environmental science - a study of inter- relationships" Wm C
1	Brown Publishers 1989
2	Francois Ramade, "Ecology of Natural resources", John Wiley & Sons, 2009
3	Robert Leo Smith, "Ecology and field biology", Harper Collins Publishers, 1998
4	Gilbert M. Masters, "Introduction to Environmental Engineering & Science", Prentice Hall International Inc. Second Edition

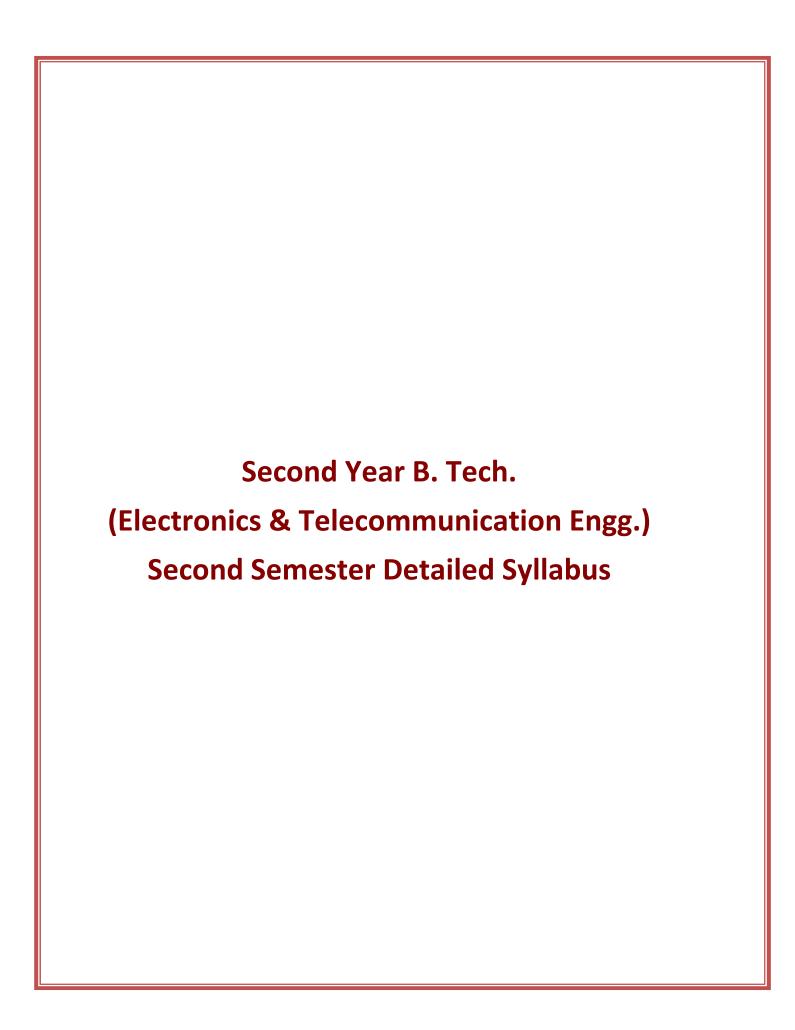
Project Work:

Visit to Local Polluted site -Urban/Rural/Industrial/Agricultural

Study of simple Ecosystems -Ponds, River, Hill slopes

Preparation of small models or device to resolve the environment problem/issue

Project work shall be based on program


*Evaluation Guideline:

- This course is non-credit Audit Course and at the end of semester, course exam will be conducted as per the guidelines received from Institute. Exam will be of 60 marks for Theory Paper and 40 marks for project report and same is to be converted in audit points by the program.
- Each group of Project should consist of maximum 4-5 students.
- Project work shall be based on program
- The project will be evaluated by respective branch HOD and project guide and senior faculty.
- There should be a presentation of project before the committee and a hard copy is to be submitted.

APPROVED BY

stitute of E

Board of Studies Bean, Academic E & TC DEPT. Tatyasaheb Kore Institute of Englischnology (Autonomous) & Technology (Autonomous) arananagar, Dist. Kolhapur Warananagar, Dist. Kolhagur

ETC401- ELECTRONIC DEVICES & CIRCUITS-II

Lectures: 4 Hrs/WeekEvaluation SchemeCredit: 3ISE : 40 MarksESE : 60 Marks

	Course Objectives: The course aims to:					
1	Provide an introduction and basic understanding of feedback amplifiers, power amplifiers, oscillators, multivibrators.					
2	Develop student ability to apply basic engineering sciences to understand the operation & analysis of electronic circuits using diodes, bipolar junction transistors and field effect transistors					
3	Provide analog electronic circuit design techniques using diodes, bipolar junction Transistors and field effect transistors, and to develop analytical skills.					

Cours	Course Outcomes:						
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy					
CO1	Design Multistage Amplifier	Knowledge, Application					
CO2	Analyze Feedback Amplifier	Analysis					
CO3	study Power Amplifier	Knowledge					
CO4	Describe & Design Different types of Oscillators using BJT	Application					
CO5	Describe & Design Different types of Multivibrators using BJT	Knowledge					
CO6	Study IC voltage Regulators	Application					

Description:

Electronics Device and Circuit-II course is a core electronics course. This course describes the applications of electronics circuit design. It gives the detail design concept of different electronics circuit for their detail operation and working principle.

Prerequisites:	1	Electronics Devices and Circuits-I	0F-05-

	Course Contents					
Unit No:1	Multistage Amplifiers Need of cascading, Parameter evaluation such as Ri ,Ro, Av, Ai & bandwidth for general multistage amplifier, Design of two stage RC coupled amplifier, Direct coupled amplifier using BJT.	6 Hrs.				
Unit No:2	Feedback Amplifiers: Introduction of feedback, reasons for negative feedback. Analysis of Voltage series, Current series, Voltage shunt, Current shunt feedback amplifiers, Design of two stage Voltage series feedback amplifier.	8 Hrs.				
Unit No:3	Power Amplifiers: Need of Power amplifier, classification of power amplifier, Power considerations, Distortion in power amplifiers: Phase, Frequency, amplitude/ harmonic / nonlinear distortion, amplitude distortion using Three point method. analysis and design of Class A single ended transformer coupled amplifier& class A Push pull amplifiers, Class B amplifier & class B push pull amplifier , crossover distortion, class AB Push pull amplifiers. Complementary symmetry push pull power amplifier.	10 Hrs.				
Unit No:4	Oscillators: Barkhausen's criteria, Frequency and amplitude stability, Classification, RC oscillators: analysis & design of RC phase shift & Wein bridge oscillator using BJT. LC oscillators: analysis & design of Colpit's & Hartely's oscillators using BJT, Crystal oscillator.	8 Hrs.				
Unit No:5	Multivibrators: Transistor as a switch, Different transistor switching parameters, overdrive factor, classification of multivibrators, Analysis and design of collector coupled -Astable, Monostable, fixed bias and self-bias Bistable multivibrator and Schmitt trigger using BJT considering overdrive factor. Triggering circuits for Multivibrators	10 Hrs.				
Unit No:6	IC voltage regulator Study and design of regulators using IC's :78XX, 79XX,LM723,LM317, LM337.	6 Hrs.				

	PO1	DO2	PO2 PO3	DO4	4 DO5	DO6	DO7	DO8	DO0	DO10	DO11	DO12	If applicable				
		01 PO2		PO3	PU3	PUS	PUS	PU4	POS	PO0	PO/	PO8	PO9	PO10	POH	PO12	PSO1
CO1		1		1				3			3		2		1		
CO2			2			3	2										
CO3	3	2							2					1			
CO4					3					3					2		
CO5	2		2	3			1				2		1				
CO6					1							2			3		

Text Books:						
1	N.C. Goyal & R.K. Khetan, "A Monograph on Electronics Design Principles", Khanna Publishers					
2	Allen Mottershed, "Electronic devices & circuits", Prentice- Hall India					
3	G. K. Mittal, "Electronic devices & circuits"					
4	R.S.Sedha, "Applied Electronics",					

Reference Books:						
1	David A. Bell, "Electronic devices & circuits", Oxford University					
2	Salivahanan, N Sureshkumar, "Electronic devices & circuits", Tata McGraw Hill Publication					
3	Robert L. Boylsted, Louis Nashelsky, "Electronic devices & circuit theory", Pearson Education					

ETC402- COMMUNICATION ENGINEERING

Lectures: 3 Hrs/WeekEvaluation SchemeCredit: 3ISE : 40 MarksESE : 60 Marks

Course	Course Objectives:						
The obj	The objective of the course is to:						
1	Understand the concept of analog communication systems and its types						
2	Understand basic concepts of analog modulation and demodulation schemes						
3	Study strengths and weakness of various communication systems.						
4	Apply knowledge of analog communications systems under the presence of noise						

Cours	Course Outcomes:						
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy					
CO1	Understand the concept of analog communication systems and its types.	Understanding Knowledge,					
CO2	Understand the baseband transmission and reception	Knowledge, Application					
CO3	Evaluates problems on analog modulation and demodulation schemes	Knowledge, Application					
CO4	Analyze analog communications systems under the presence of noise.	Analyze,					

Description:Course deals with understanding the principles of Analog Communication, study of different types of Pulse modulation techniques, Noise in communication system .It describes the fundamentals of baseband transmission, modulation techniques.

	0 00 00 100 010 0	on total quest	
	1	Electronic devices & circuits	
Prerequisites:	2	signals & system	
	3	Basics of electronic communication	OF EU

	Course Contents	
Unit No: 1	Amplitude Modulation: Basic block diagram of communication system, Need for modulation, channel, frequency spectrum, time and frequency domain signals, Amplitude Modulation principles, AM envelope, frequency spectrum & BW, Modulation index, % modulation, AM transmitters: Block of low level DSBFC, High level DSBFC, Trapezoidal patterns. Evolution and descriptions of SSB, Suppression of carrier using balanced modulator, Suppression of unwanted sideband, Methods: Filter system, phase shift & third method Vestigial sideband(VSB)	8 Hrs.
Unit No: 2	Angle Modulation: Instantaneous frequency, Concept of angle modulation, frequency spectrum, Narrowband & Wide Band FM, Modulation Index, Bandwidth, Phase modulation, Generation of FM (Direct & Indirect Method)	6 Hrs.
Unit No: 3	Noise: Sources of noise, Types of noise White noise, shot noise, thermal noise, partition noise, low frequency or flicker noise, burst noise, avalanche noise, signal to noise ratio, Noise Figure, Noise Temperature.	4 Hrs.
Unit No: 4	AM Receiver: Simplified block diagram of AM receiver, receiver parameters: Sensitivity Selectivity, fidelity, Types of AM receiver: TRF and superheterodyne (block diagram), AM detection types: using diode detector, distortion in diode detector. Automatic Gain Control (AGC).	6 Hrs.
Unit No: 5	FM Receiver: Double conversion FM receiver block diagram, FM demodulator, tuned Circuit frequency discriminators, slope detectors, fosters seeley discriminators, ratio detectors	6 Hrs.
Unit No: 6	Pulse Modulation: Introduction, Sampling theorem: Occurrence of aliasing error, PAM: Channel BW for PAM, Natural Sampling, Flat-top Sampling, PAM & TDM, Signal Recovery, PWM, Uses of PWM, PPM, Generation of PAM, Generation of PWM, Generation of PPM	6 Hrs.

	DO1	DO3	PO3	PO4	DO5	05 PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable PSO1 PSO2 PSO3		
	POI	102			POS								PSO1	PSO2	PSO3
CO1	1			1	2				1		2				
CO2	1	1									2				
CO3	2	2			2								1		
CO4		2	2	3					1					1	

Text Books:						
1	George Kennedy, "Electronic Communications", Tata McGraw Hill.					
2	Wayne Tomasi "Electronics Communication System", Fundamentals through Advanced, Pearson Education, 5 th Edition.					
3	V. Chandra Sekar, "Analog Communication", OXFORD University press.					

Refere	Reference Books:					
1	B.P. Lathi, "Analog and Digital Communication", OXFORD University press.					
2	Simon Haykin, "An introduction to analog & digital communications", John Wiley & Sons					
3	R. P. Singh, S D Sapre, "Communication System-Analog & Digital", Tata McGraw Hill Publication, 3 rd Edition					
4	Roy Blake, "Electronic Communication Systems", CENGAGE learning, 2 nd Edition					
5	Louis E. Frenzel, "Principals of electronic communication system", Tata McGraw Hill Pub.					

ETC403-LINEAR INTEGRATED CIRCUITS

Lectures: 3 Hrs/WeekEvaluation SchemeCredit: 3ISE : 40 MarksESE : 60 Marks

	Course Objectives: The course aims to:						
1	Understand need of differential amplifier To study the fundamentals /basics of differential amplifier by using transistor.						
2	Study internal circuit & operation with different stages of op-amp.						
3	Illustrate waveform generators and Timer using special ICs.						
4	Study different PLL and VCO ICs and its applications.						

Cours	Course Outcomes:						
COs	Upon successful completion of this course, the students will be able to:	Blooms Taxonomy					
CO1	Distinguish and design differential amplifiers used in linear integrated circuits.	Analyzing					
CO2	Design amplifiers and active filters.	Applying & creating					
CO3	Identify and design different linear and non linear application using op-amp	Applying					
CO4	Illustrate waveform generators and Timer using special ICs.	Applying					
CO5	Describe different PLL and VCO ICs and their applications.	Understanding					

Description:

This course deals with the study of basic transistor configuration used as basic building block for integrated circuit called op-amp. It aims t0 establish the firm understanding of linear and non linear application of op-amp. This course also focuses on design aspects of active filters, waveform generators and PLL circuits

	1	The Basic Concept of circuit theory	
Prerequisites:	2	Basic Knowledge of electronics devices	TUTE OF ENGL
•			

Course Contents								
	Introduction to op-amp							
Unit No:1	Block diagram of op-amp in detail, Differential Amplifier configurations, Differential amplifier analysis (AC and DC) for dual-input balanced-output configuration, level shifter, current mirror circuits, ideal parameters and Practical parameters of op-amp and their comparison. (Numerical expected)	8 Hrs.						
	Op-amp configurations & frequency response							
Unit No:2	Virtual ground concept, Open loop configuration, closed loop configuration, unity gain amplifier, frequency response of both configuration. slew rate equation	7 Hrs.						
	Applications of Op-amp							
Unit No:3	Summing, Scaling & Averaging Amplifiers using Op-amps, Differential amplifier using op-amp, Subtractor Circuit, Instrumentation amplifier, V to I & I to V Converter, Precision Rectifiers, Log & Anti-log Amplifiers, Study of comparator, Schmitt Trigger, Window Detector, Peak Detectors, Sample & Hold Circuits.	7 Hrs.						
	Active Filters							
Unit No:4	Introduction, Analysis & Design of Butterworth filters: High Pass filter, Low Pass filter (First & Second order), Band Pass filter, Band Reject filter, All Pass Filter (Numerical expected)	6 Hrs.						
	Waveform Generators							
Unit No:5	Analysis & Design of Square wave generator, Triangular wave generator, Saw tooth wave generator. Analysis & Design of RC phase shift oscillator, RC wein bridge oscillator, Quadrature oscillator.	6 Hrs.						
	Special linear ICs and its Industrial applications							
Unit No:6	Introduction, block diagram, operating principle and applications of IC555,IC 565,High precision performance operational amplifier (OP177), Instrumentation amplifier (AD620),Function generator (IC8038).	7 Hrs.						

	DO1	DO2	DO2	DO4	DO5	DO6	DO7	DOS	DOO D	DOO	DO0	DOO	DOO	PO0 PO10	PO0 PO10	PO0 PO10	PO0 PO10	PO9 PO10 I	DO10	DO10	DO10	DO10	DO10	DO10	0 PO10	DO10	DO10	PO10	PO10	PO10	PO0 PO10	0 PO10	DO10 DO	PO0 PO10	PO10 PO11	DO11	DO11	DO12	DO11 DO12	If applicable		
	POI	POZ	PO3	PO4	POS	POO	PO	PU	PO9	POIU	POII	PO12	PSO1	PSO2	PSO3																											
CO1	3	2	1											1																												
CO2	3	2		1																																						
CO3	3	2	1										JE O	F	1																											
CO4	2	1										//	Truit	NGIN	2																											
CO5	3	2	1									1	3		12																											

Text	Text Books:							
1	Ramakant A. Gaikwad, "Op Amps and Linear Integrated Circuits", Pearson Education 2 nd and latest edition							
2	Sanjay Sharma, S K Kataria and Sons, "OP-AMPS and Linear Integrated Circuits", 2 nd Edition.							

Reference Books:							
1	S Salivahanan, V S Kanchana Bhaaskaran," Linear Integrated Circuits", Tata McGraw-Hill, 7 th Edition						
2	David Bell, "Operational Amplifiers and Linear ICs", Third edition, Oxford University Press, 3 rd Edition.						
3	B. Somanathan Nair, "Linear Integrated Circuits- Analysis, Design & Applications", Wiley India.						
4	Linear IC Datasheets						

ETC404- CONTROL SYSTEM ENGINEERING

Lectures : 3 Hrs/Week Evaluation Scheme
Credit : 3 ISE : 40 Marks
ESE : 60 Marks

Course Objectives:						
The	course aims to:					
1	To provide an introduction and basic understanding of Control System					
2	To develop time & frequency domain analysis					
3	To analyze& compare different control systems and understand the concept of stability & state space variables					

Course Outcomes:						
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy				
CO1	Apply knowledge of mathematics, science, and engineering to design, analyze and control the different systems	Apply				
CO2	Explain time & frequency domain analysis for different control systems	Analyze				
CO3	Demonstrate & compare different control systems and can check system stability.	Analyze				
CO4	Describe state variables Design model for control system	Apply				

Description:

This course aims to impart fundamental knowledge of different types of control systems and Applied knowledge of Electrical ,mechanical systems and their mathematical modeling .Transfer function ,Time domain analysis and frequency domain analysis, steady state error and error constants ,Stability analysis root locus ,bode plot polar plot ,Basics of compensators and controllers, Also students should get knowledge of State model and state variables.

Studente chould have knowledge at Mathematics	Prerequisites:		Students should have knowledge of Fundamental Electronics and different components,
2 Students should have knowledge of Whathematics	Trerequisites.	2	Students should have knowledge of Mathematics

	Course Contents							
Unit No:1	Introduction: Classification of control system, Effects of feedback, Mathematical models – (Mechanical & Electrical systems) Differential equations, Transfer function, Block diagram algebra – Block diagram reduction, Representation by Signal flow graph – Reduction using Mason's gain Formula.	7 Hrs.						
Unit No:2	Time Response Analysis: Standard test signals-Time response of first & second order system-Design specification of 2 nd order system & error compensation, Characteristic Equation of Feedback control systems, Transient response of second order system- Time domain specifications, Steady state response- Steady state error and error constants.	7 Hrs.						
Unit No:3	Stability Analysis In S-Domain The concept of stability – Routh's stability criterion – limitations of Routh's stability Root Locus Technique: The root locus concept – construction of root locieffects of adding poles and zeros to G(s) H(s) on the root locus.	6 Hrs.						
Unit No:4	Frequency Response Analysis Introduction, Frequency domain specifications-Bode plots, Phase margin and Gain margin-Stability Analysis from Bode Plots, Polar Plots, Nyquist Stability Criterion, Nyquist plot & stability analysis.	7 Hrs.						
Unit No:5	Compensators And Controllers Compensation techniques –Lag, Lead, Lead-Lag Controllers design in frequency Domain, ON-OFF Controller, PID control system. Programmable Logic Controller (PLC)	7 Hrs.						
Unit No:6	State Space Analysis Concept of state, state variable & state model, state model for linear continuous time systems, Transfer function from state model, Computation of state transition matrix, Controllability & Observability.	6 Hrs.						

														If applicable			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	3	2	1	1		1			2			1	1	3		
CO2	3	2	1	3	1		2			1		2	1		3		
CO3	2	2	3	1	1		1			1		2	1		3		
CO4	3	3	1	2	1		1			1		1	1		3		

Text Books:								
1	I .J. Nagrath and M. Gopal, "Control Systems Engineering", Anshan Publishers, 5 th Edition.							
2	A.Anandkumar, "Control System Engineering",PHI Publication 2 nd Edition.							
3	R.Anandnatarajan,,P.Rameshbabu, "Control System Engineering", Scitech Publications.							

Reference Books:							
1	Norman S Nise "Control System Engineering", Wiley Publication, 8 th Edition.						
2	SanarjjetGhosh, "Control System Theory & application", Pearson Education, 1st Edition.						
3	Kuo B.C., "Automatic Control System", Prentice Hall Publication, India						

ETC405- DATA STRUCTURE & ALGORITHMS

Lectures: 3 Hrs/WeekEvaluation SchemeCredit: 3ISE : 40 MarksESE : 60 Marks

Cou	Course Objectives:						
The	The course aims to:						
1	1 To study the basic concept of data structure & it's types.						
2	To understand the knowledge of linear data structure as well as relevant operations on it.						
3	To understand knowledge of non linear data structure & relevant operations on it.						
4	To apply knowledge of data structure applications in engineering field.						

Course Outcomes:								
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy						
CO1	Explain the basic concept of data structure & it's types.	Knowledge, Application						
CO2	Solve problems on linear data structures.	Knowledge, Analysis						
CO3	Solve problems on non linear data structures.	Knowledge, Analysis						
CO4	Analyze knowledge of data structure applications in engineering field.	Knowledge, Application						

Description:

Data Structure and Algorithms course is offered as Basic Computer Science & Engineering course. Student should get basic knowledge of algorithms in linear and non linear data structures which will be helpful for writing programming code using any language.(C,C++,Java)

	1	C Programming	
Prerequisites:	2	Mathematics	
	3	Basics of Operating system	TUTE OF ENG.
	4	Basics of Algorithms and flowcharts	

Course Contents									
Unit No: 1	Introduction & Overview: Introduction to theory of data structures, data types, Classification of data structure, Algorithms, types of Algorithms, complexity, time space trade-off with example.	2 Hrs.							
Unit No: 2	Arrays, Records & Pointers: Introduction, linear arrays, representation of linear array in memory, Algorithm for traversing linear arrays, inserting & deleting, Sorting: bubble sort, searching: linear search, binary search, Multi-dimensional arrays, Pointers: pointer arrays, Records: Record structures, representation of records in memory, parallel arrays, Matrices, Sparse matrices	6 Hrs.							
Unit No: 3	Linked Lists: Introduction, linked lists & its representation, Traversing & searching a linked list, memory allocation, Garbage collection, insertion & deletion of nodes of linked list, header linked list, two-way lists.	6 Hrs.							
Unit No: 4	Stacks & Queues: Introduction to stacks, stack as an Abstract Data type, representation. Applications of stacks, stacks & recursion, Queue, representation of queue as an array and as a linked list, circular, double ended, priority, application of queues.	7 Hrs.							
Unit No: 5	Trees: Binary Tree: introduction, types, definition, properties, representations, operations, binary tree traversal, reconstruction, counting number of binary trees, applications. Advanced trees: AVL trees or height balanced trees, representation, operation, Threaded binary trees, Expression trees. Multi way trees, multi way search trees, B+trees	7 Hrs.							
Unit No: 6	Graphs & Hashing: Introduction, Graph theory terminology, sequential representation of graphs: Adjacency Matrix, Path matrix, Warshall's Algorithm, shortest paths, Hashing, Hash functions, collision, chaining	8 Hrs.							

	DO1	DO2	DO2	DO4	DO5	DO6	DO7	DO7	DO	DO8	O7 PO8	POO	DO10	DO11	DO12]	If appli	cable
	POI	POZ	PO3	PO4	103	PO0	PO/	100	PU9	1010	POII	PO12	PSO1	PSO2	PSO3			
CO1	2	2	1	1	2					1			100	")				
CO2	3	2	1	1	2					1			TIVIE	ENGIA				
CO3	3	3	1	1	2					1		/3	3/		13			
CO4	3	3	1	1	2					1			Auton	omous	18			

Text Books:							
	1	ISRD group, "Data structure using C", Tata McGraw Hill, Publication					
	2	Seymour Lipschutz, "Data structures", Tata McGraw Hill Publication					

Reference Books:								
1	Mark Allen Weiss, "Data structure & algorithm analysis in C", Pearson Publication Education (LPE)							
2	A.N. Kathie, "Introduction to Data structure in C", Pearson Publication Education (LPE)							
	Strull							

ETC406- PROGRAMMING LAB-II (PYTHON)

Lectures : 2 Hrs/Week Evaluation Scheme
Credit : 1 ISE : NA
ESE : NA

	Course Objectives: The course aims to :									
1	To develop problem solving skills and their implementation through basic Python.									
2	To understand and implement concepts of decision making statements.									
3	To implement programs based on looping statements.									
4	To understand & implement programs based on built in functions.									

Course	Outcomes:	
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	Identify and use basic concepts of python programming in various data structure.	Remember
CO2	To solve programs on decision making & looping statements in python.	Knowledge, Application
CO3	Understand python list and tuple concepts.	Understand, Apply
CO4	Understand python set and dictionary collection concepts.	Understand, Apply

Description:

Programming Lab-II (Python) course is offered as the basic programming course. This course describes the scope of Python programming in various areas of engineering & research in academics as well as in software industries.

	1	C Programming	
Prerequisites:	2	C++ Programming	
	3	Data Structure and Algorithm	THUTE OF ENGINE

	Course Contents									
Unit No: 1	Introduction to Python: Introduction to Python: High level language, Scope of python, interactive mode and script mode. Variables, Operators and Operands in Python. Arithmetic, relational and logical operators, Operator precedence, Taking input using raw input() and input()	2 Hrs.								
Unit No: 2	method and displaying output - print statement, Comments in Python. Conditional and Looping: if - else statement and nested if - else while, for, use of range function in for, Nested loops, break, continue, pass statement Use of compound expression in conditional constructs, Nested conditional statements, Nested Looping structures	2 Hrs.								
Unit No: 3	Functions: Built-In Function, Functions from math, random, time & date module. Composition User Define Function: Defining, invoking functions, passing parameters, Intra- package References, Packages in Multiple Directories	2 Hrs.								
Unit No: 4	Lists Concept of mutable lists, creating, initializing and accessing the elements of list, List operations Concatenation, Membership, list slices, List comprehensions List functions & methods: len, insert, append, extend, sort, remove, reverse, pop functions	2 Hrs.								
Unit No: 5	Tuples & Sets: Immutable concept, creating, initializing and accessing the elements in a tuple; Tuple functions: cmp(), len(), max(), min(), tuple(); Sets Concept of Sets , creating, initializing and accessing the elements of Sets operation Membership, union, intersection, difference, and symmetric difference	2 Hrs.								
Unit No: 6	Dictionaries: Dictionaries Concept of key-value pair, creating, initializing and accessing the elements in a dictionary, Traversing, appending, updating and deleting elements	2 Hrs.								

	DO1	DO2	DO3	PO4	DO5	DO6	DO7	DO8	PO9 PO10	DO0 DO10	8 PO0 I	DO10	PO10	DO10	DO10	DO10	DO10	DO10	DO10	0 PO10	PO11	PO12	If a	pplicab	le
	FOI	PO2	PO3	PU4	PO3	PO0	PO/	PU ₀	FU9	POIU	POII	PO12	PSO1	PSO2	PSO3										
CO1			2				1	1																	
CO2	3	1					1																		
CO3	2	1	3	1	1	1						1													
CO4	2	2	3	2	1	1	1					1													

Text	t Books
1	Martin C. Brown, "Python: The Complete Reference", Tata McGraw hill 2018.
2	Mark Lutz, "Learning Python", O" Reilly Publication Edition 2013.
3	Michael Dawson, "Python Programming for Absolute Beginner", Cengage Learning Edition 2010.

Referen	nce Books:
1	David Beazley, "Python Essential Reference", Developers library 4 th Edition.
2	Paul Barry, "Head First Python", O'Reilly Publication Edition 2011.
3	Yashavant Kanetkar, "Let Us Python ", BPB Publication, 2009

ETC401P- ELECTRONIC DEVICES & CIRCUITS -II LAB

Practical : 2 Hrs/Week Evaluation Scheme
Credit : 1 ISA : 25 Marks
POE : 50 Marks

	Objectives: arse aims to:
1	Provide an introduction and basic understanding of feedback amplifiers, power amplifiers, oscillators, multivibrators.
2	Develop student ability to apply basic engineering sciences to understand the operation & analysis of electronic circuits using diodes, bipolar junction transistors and field effect transistors
3	Provide analog electronic circuit design techniques using diodes, bipolar junction Transistors and field effect transistors, and to develop analytical skills.

Cours	Course Outcomes:										
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy									
CO1	Design Multistage Amplifier	Knowledge, Application									
CO2	Analyze Feedback Amplifier	Analysis									
CO3	study Power Amplifier	Knowledge									
CO4	Describe & Design Different types of Oscillators using BJT	Application									
CO5	Describe & Design Different types of Multivibrators using BJT	Knowledge									
CO6	Study IC voltage Regulators	Application									

Description:

Electronics Device and Circuit-II course is a core electronics course. This course describes the applications of electronics circuit design. It gives the detail design concept of different electronics circuit for their detail operation and working principle.

Prerequisites:	1	Electronics Devices and Circuits-I
-----------------------	---	------------------------------------

List	of Experiments						
(Min	imum 09 experiments + 01 Simulation):						
Sr. No.	Name of the experiment	Hrs.	Cognitive levels of attainment as per Bloom's				
1	Design and frequency response of direct coupled amplifier.	2	Knowledge				
2	Study the frequency response of two stages RC coupled amplifier.	2	Knowledge				
3	Analysis of frequency response of voltage series feedback amplifier.	2	Analysis				
4	Design of transformer coupled class A amplifier.	2	Analysis				
5	Understand the working principle of RC phase shift oscillator using BJT	2	Knowledge				
6	Demonstration of Wein bridge oscillator using BJT	2	Knowledge				
7	Analysis of Colpitts oscillator using BJT	2	Knowledge				
8	Study of Hartley oscillator using BJT	2	Application				
9	Design of Astable multivibrator	2	Application				
10	Analysis of monostable multivibrator using BJT	2	Application				
11	Design of bistable multivibrator using BJT	2	Application				
12	Study of Schmitt trigger using BJT	2	Application				
13	Design of voltage regulator using LM317	2	Application				
14	Demonstration of voltage regulator using IC723	2	Knowledge				
15	Simulation of Oscillator	2	Application				
16	Simulation of Multivibrator	2	Application				
17	PCB Design a.Design of Astable Multivibrator or Schmitt trigger. b.Design of Power Supply using IC voltage Regulator.	To be Completed in Extra Time	Knowledge Application				

	DO1	DO2	DO2	DO4	DO5	DO6	DO7	DO8	DO0	PO10	DO11	DO12	I	f applica	able
	POI	PO2	FU3	PU4	POS	PO0	PO/	100	FU9	POIU	POII	1012	PSO1	PSO2	PSO3
CO1		1		1				3			3		2		1
CO2			2			3	2								
CO3	3	2							2					1	
CO4					3					3					2
CO5	2		2	3			1				2		1		
CO6					1							2	TE DE		3

ETC402P- COMMUNICATION ENGINEERING LAB

Practical : 2 Hrs/Week Evaluation Scheme
Credit : 1 ISA : 25 Marks
POE : NA

Course	Course Objectives:								
The obj	The objective of the course is to:								
1	Understand the concept of analog communication systems and its types								
2	Understand basic concepts of analog modulation and demodulation schemes								
3	Study strengths and weakness of various communication systems.								
4	Apply knowledge of analog communications systems under the presence of noise								

Cours	Course Outcomes:								
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy							
CO1	Understand the concept of analog communication systems and its types.	Understanding Knowledge							
CO2	Understand the baseband transmission and reception	Knowledge, Application							
CO3	Evaluates problems on analog modulation and demodulation schemes	Knowledge, Application							
CO4	Analyze analog communications systems under the presence of noise.	Analyze							

Description:										
Course deals with	Course deals with understanding the principles of Analog Communication, study of different types of									
Pulse modulation	Pulse modulation techniques, Noise in communication system .It describes the fundamentals of baseband									
transmission, mo	dulatio	on techniques.								
	1	Electronic devices & circuits								
Prerequisites:	2	signals & system								
	3	Basics of electronic communication								

List of Experiments

Minimum 10 experiments:

Sr. No.	Name of the experiment	Hrs.	Cognitive levels of attainment As per Bloom's
1	Practical implementation of Amplitude modulation and demodulation	2	Knowledge
2	Calculation of modulation index by graphical method of DSBFC signal & measurement of power of AM wave for different modulating signal.	2	Knowledge
3	SSB modulation using any method (filter method, Phase shift method) and its detection.	2	Knowledge, Application
4	Performance and analysis of AM system using trapezoidal method.	2	Knowledge, Analysis
5	Practical implementation of frequency modulation and demodulation	2	Knowledge
6	Experimenting Sampling and reconstruction and also observe aliasing effect by varying sampling frequency.	2	Analysis
7	Practical implementation of PAM system.	2	Analysis
8	Practical implementation of PWM system	2	Knowledge, Evaluation
9	Practical implementation of PAM-TDM systems	2	Knowledge, Analysis
10	Practical implementation of PPM system	2	Knowledge, Application
11	Envelope detector- Practical diode detector	2	Knowledge, Application
12	Study on Pre-emphasis and De-emphasis.	2	Knowledge
13	Visit to AIR		Knowledge, Application

Note:

1) There should be compulsory one industrial visit related to this subject.

	DO1	DO3	DO2	DO4	DO5	DO6	DO7	DOS	PO9 PO	DO0	DO0	DO10	DO11	DO12]	f appli	cable
	POI	POZ	PO3	PO4	PO3	PO0	PO/	PO6	PU9	POIU	POII	PO12	PSO1	PSO2	PSO3		
CO1	1			1	2				1		2						
CO2	1	1									2						
CO3	2	2			2								E OF EN				
CO4		2	2	3					1			(511)		WE.			

ETC403P- LINEAR INTEGRATED CIRCUITS LAB

Practical : 2 Hrs/Week Evaluation Scheme
Credit : 1 ISA : 25 Marks
POE : 50 Marks

Cou	Course Objectives:								
The	The course aims to:								
1	Understand need of differential amplifier To study the fundamentals /basics of differential amplifier by using transistor.								
2	Study internal circuit & operation with different stages of op-amp.								
3	Illustrate waveform generators and Timer using special ICs.								
4	Study different PLL and VCO ICs and its applications.								

Cours	Course Outcomes:								
COs	Upon successful completion of this course, the students will be able to:	Blooms Taxonomy							
CO1	Distinguish and design differential amplifiers used in linear integrated circuits.	Analyzing							
CO2	Design amplifiers and active filters.	Applying & creating							
CO3	Identify and design different linear and non linear application using op-amp	Applying							
CO4	Illustrate waveform generators and Timer using special ICs.	Applying							
CO5	Describe different PLL and VCO ICs and their applications.	Understanding							

Description:

This course deals with the study of basic transistor configuration used as basic building block for integrated circuit called op-amp. It aims to establish the firm understanding of linear and non linear application of op-amp. This course also focuses on design aspects of active filters, waveform generators and PLL circuits

			8 1	U	
		1	The Basic Concept of circuit theory		
Pı	rerequisites:	2	Basic Knowledge of electronics devices	TUTE OF ENG	_

List of Experiments									
Minimum 10 experiments:									
Sr. No.	Name of the experiment	Hrs.	Cognitive levels of attainment As per Bloom's						
1	Basic op-amp configuration -Inverting , Non inverting amplifier	2	Understanding						
2	Study the frequency response of operational amplifier	2	Understanding						
3	Design and implement differential amplifier and subtractor using op-amp	2	Understanding, Applying						
4	Study the summing, scaling, and averaging amplifier	2	Understanding, Applying						
5	Build and test precision half & full wave rectifier	2	Applying						
6	Build and test Comparator and Schmitt trigger	2	Understanding, Applying						
7	Design of Butterworth filters	2	Analyzing						
8	Build and test square & triangular wave generator.	2	Understanding, Applying						
9	Build and test Integrator and Differentiator	2	Evaluating						
10	Design and implement oscillator using Op-Amp.	2	Analyzing						
11	Study of multivibrator using IC555	2	Understanding, Applying						

	DO1	DO3	DO2	DO4	DO5	DO6	DO7	DO	DOO	DO10	DO11	DO12	PSO1 PSO2 PSO3		
	POI	POZ	PO3	PO4	POS	POO	PO7	PU	PU9	POIU	POH	PO12	PSO1	PSO2	PSO3
CO1	3	2	1											1	
CO2	3	2		1											
CO3	3	2	1												1
CO4	2	1													2
CO5	3	2	1										3		

ETC404T- CONTROL SYSTEM ENGINEERING (Tutorial)

Tutorial: 1 Hr/WeekEvaluation SchemeCredit: NAISA : 25 Marks

POE: NA

Cou	Course Objectives:								
The	The course aims to:								
1	To provide an introduction and basic understanding of Control System								
2	To develop time & frequency domain analysis								
3	To analyze& compare different control systems and understand the concept of stability & state space variables								

Course Outcomes:								
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy						
CO1	Apply knowledge of mathematics, science, and engineering to design, analyze and control the different systems	Apply						
CO2	Explain time & frequency domain analysis for different control systems	Analyze						
CO3	Demonstrate & compare different control systems and can check system stability.	Analyze						
CO4	Describe state variables Design model for control system	Apply						

Description:

This course aims to impart fundamental knowledge of different types of control systems and Applied knowledge of Electrical ,mechanical systems and their mathematical modeling .Transfer function ,Time domain analysis and frequency domain analysis, steady state error and error constants ,Stability analysis root locus ,bode plot polar plot ,Basics of compensators and controllers, Also students should get knowledge of State model and state variables.

Prerequisites:		Students should have knowledge of Fundamental Electronics and different components,
Trerequisites.	2	Students should have knowledge of Mathematics

Tutoria	Tutorials:							
Sr. No.	Title of Tutorial							
1	To Study Transfer Function and derive transfer function if RLC Circuit							
2	To Study Block Diagram Reduction Rules							
3	Solve Examples on B lock Diagram Reduction							
4	To Study Rules for Signal Flow Graph							
5	Solve Examples on Signal Flow Graph							
6	To Study Time Response of First Order System							
7	To Study Time Response of Second Order System							
8	To Study Steady State Error and Error Constants							
9	To Stability using Routh's Criterion							
10	To Study Root Locus And Bode Plot							

ETC405T- DATA STRUCTURE & ALGORITHMS (Tutorial)

Tutorial: 1 Hr/WeekEvaluation SchemeCredit: NAISA : 25 Marks

POE: NA

Cou	Course Objectives:						
The	The course aims to:						
1	To study the basic concept of data structure & it's types.						
2	To understand the knowledge of linear data structure as well as relevant operations on it.						
3	To understand knowledge of non linear data structure & relevant operations on it.						
4							

Course	Course Outcomes:										
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy									
CO1	Explain the basic concept of data structure & it's types.	Knowledge, Application									
CO2	Solve problems on linear data structures.	Knowledge, Analysis									
CO3	Solve problems on non linear data structures.	Knowledge, Analysis									
CO4	Analyze knowledge of data structure applications in engineering field	Knowledge, Application									

Description:

Data Structure and Algorithms course is offered as Basic Computer Science & Engineering course. Student should get basic knowledge of algorithms in linear and non linear data structures which will be helpful for writing programming code using any language.(C,C++,Java)

	1	C Programming
Prerequisites:	2	Mathematics
r rerequisites.	3	Basics of Operating system
	4	Basics of Algorithms and flowcharts

Tutorials:							
Sr. No.	Title of Tutorial						
1	Develop an algorithm for Matrix Multiplication						
2	Develop an algorithm for Traversing a Linear arrays						
3	Develop an algorithm for Inserting and deleting elements from linear arrays						
4	Develop an algorithm for Linear search						
5	Develop an algorithm for Binary Search						
6	Develop an algorithm for Bubble sort						
7	Develop a algorithm for Push and pop Operation on stack						
8	Develop an algorithm for Inserting and deleting elements from queue.						
9	Develop an algorithm for traversing a linked list						
10	Develop an algorithm for traversing Binary trees						
11	Develop an algorithm for Shortest path						
12	Develop an algorithm for Merge sort						

ETC406P-PROGRAMMING LAB-II (PYTHON) LAB

Practical : 2 Hrs/Week Evaluation Scheme
Credit : 1 ISA : 25 Marks
POE : 50 Marks

Cou	Course Objectives:							
The	course aims to :							
1	To develop problem solving skills and their implementation through basic Python.							
2	To understand and implement concepts of decision making statements.							
3	To implement programs based on looping statements.							
4	To understand & implement programs based on built in functions.							

Course Outcomes:									
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy							
CO1	Identify and use basic concepts of python programming in various data structure.	Remember							
CO2	To solve programs on decision making & looping statements in python.	Knowledge, Application							
CO3	Understand python list and tuple concepts.	Understand, Apply							
CO4	Understand python set and dictionary collection concepts.	Understand, Apply							

Description:

Programming Lab-II (Python) course is offered as the basic programming course. This course describes the scope of Python programming in various areas of engineering & research in academics as well as in software industries.

	1	C Programming
Prerequisites:	2	C++ Programming
	3	Data Structure and Algorithm

List of Experiments

(Minimum 09 experiments + 01 Mini Project compulsory):

Sr. No.	Name of the experiment	Hrs.	Cognitive levels of attainment As per Bloom's			
1	Develop a python program to demonstrate basic data types in python.	2	Knowledge Analysis			
2	Develop a python program to study Arithmetic, relational and logical operators and Operands in Python.	2	Knowledge Analysis			
3	Develop a python programs to study if, if else , if else if statements.	2	Knowledge Analysis			
4	Develop a Write python programs to study looping statements while & for.	2	Knowledge Analysis			
5	Develop a Write python programs to study built in functions of string and math packages.	2	Knowledge Analysis			
6	Develop a Write python programs to study list access using membership operators.	2	Knowledge, Application			
7	Develop a Write python programs to study tuple using inbuilt functions.	2	Knowledge ,Application			
8	Develop a Write python programs to study set operations.	2	Knowledge ,Application			
9	Develop a Write python programs to study dictionary traversing.	2	Knowledge ,Application			

	DO1	DO2	DO2	PO4	DO5	DO6	DO7	DO	DO0	DO10	DO11	DO12	If applicable		
	POI	POZ	PO3	PO4	POS	PO0	PO	PU	PU9	POIU	POII	PO12	PSO1	PSO2	PSO3
CO1			2				1	1							
CO2	3	1					1								
CO3	2	1	3	1	1	1						1			
CO4	2	2	3	2	1	1	1					1	- 65	/	

ETC407A- AUDIT COURSE-IV [GENERAL PROFICIENCY]

Lectures: 2 hrs / week Credits : Non-Credit

Examination Scheme: ISE : NA Audit Point : 2

INTRUCTION FOR AUDIT COURSE:

Student has to undergo any one general proficiency course mentioned below. This course must have minimum Two Weeks duration. Student can do this course from the training institutes which are recommended and suggested by the department for respective academic year. At the end of semester, student has to submit the COURSE CERTIFICATE to the department.

Languages:

- English Speaking Course
- 2.German Language Course
- 3. Japanese Language Course (Any one online/ offline Course Certificate course of Two Weeks.)

Member Secretary Board of studies

Chairman Board of studies

Chairman **Board of Studies** E & TC DEPT.

& Technology (Au" nomous) Warananagar, Dist. Kolhepur

APPROVED BY

Academic Dean T.K.I.E.T., Warananagar Dean, Acade

Tatyasaheb Kore Institute of Engg.

& Technology (Autonomous)

Principal T.K.I.E.T., Warananagar

Chalrman Academic Council Tatyaseheb Kore institute of Engg. Warananagar, Dist. Kolhaputatyasaheb Kore Institute of Engg. & Technology (Autonomous) Warananagar, Dist. Kolhapur

