

Shree Warana Vibhag Shikshan Mandal's Tatyasaheb Kore Institute of Engineering And Technology, Warananagar

Department Of Computer Science and Business System (Draft Syllabus Copy)

S.Y.B.TECH IN COMPUTER SCIENCE AND BUSINESS SYSTEM W.E.F 2025-26

S. Y. B.Tech. (Sem-III & IV) Computer Science & Business System Syllabus Structure and Curriculum as per NEP 2020

Catvasaheb Kore Institute of Engineering & Technology

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

Department of Computer Science and Business System

To be a leading Computer Science & Business Systems department recognized for excellence in technical and management education, fostering innovation, academic flexibility, industry readiness, and a commitment to professional ethics, shaping future leaders who drive sustainable development and societal progress.

Mission

- ✤ To continuously implement a dynamic and adaptable curriculum.
- To enhance industry-institute collaboration to effectively promote internships, improve employability, and foster entrepreneurial skills among students.
- To cultivate an environment that inspires faculty and students to actively participate in impactful academic and research pursuits.
- ✤ To expand access to quality education for rural and underprivileged sections of society.
- ✤ To instill a commitment to lifelong learning enriched with human values, social responsibility

Program Educational Objectives (PEOs)

Graduates will be,

- To design and develop computing systems by integrating modern technologies and addressing business intelligence challenges.
- To acquire capabilities for pursuing higher education and entrepreneurship with a strong aptitude for innovation
- To function effectively as professionals with excellent interpersonal skills, upholding ethical and social responsibilities
- To lead in their respective domains and contribute positively to societal needs, working efficiently in multidisciplinary and multicultural environments.

Quality Policy

To promote excellence in academic and training activities by inspiring students for becoming competent professionals to cater industrial and social needs.

Tatvasaheb Kore Institute of Engineering & Technology

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

Program Outcomes (POs)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Tatyasaheb Kore Institute of Engineering & Technology Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

Abbreviations

Sr.No	Acronym	Defination
1	ISE	In-Semester Examination
2	ISE-I	In-Semester Examination-I
3	ISE-II	In-Semester Examination-II
4	ESE	End Semester Examination
5	ISA	In-Semester Assessment (Term Work)
6	L	Lecture
7	Т	Tutorial
8	Р	Practical
9	СН	Contact Hours
10	С	Credit

Course Categories

Sr.No	Acronym	Defination
1	BSC	Basic Science Course
2	ESC	Engineering Science Course
3	PCC	Program Core Courses
4	HSSM	Humanities Social Science and Management
5	VSEC	Vocational and Skill Enhancement Course
6	CC	Co-curricular course

Course/ Subject Code for Theory and Practical

2	5	UG	PCC	CB	3	0	1	T/P/A
Course	1 Vaan	Under	Program	Course	Semester	Course		T-Term work P-POE
Introduced	i rear	Graduate	Code	Category		Number		A - Audit Course

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

Second Year B. Tech. (Semester – III) **Detailed Syllabus**

In

Computer Science & Business System

Curriculum Structure, Credits and Evaluation Scheme as per NEP 2020 (To be implemented from AY 2025-26)

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

Second Year B.Tech in Computer Science & Business System Semester-III To be Implemented from 2025-26 Scheme Curriculum Structure, Credit Scheme and Evaluation

Sr. No	Category	Sub- Category	Course Code	Course Title	Teaching Scheme			Examination & Evaluation Scheme					
					L	Т	Р	C	СН	Compo nent	Marks	Min I	Marks for Passing
1	Program Core Course	РСС	25UG-PCC- CB301	Formal Language and Automata Theory	3*			2	3	ISE ESE	40 60	16 24	40
2		РСС	25UG-PCC- CB302	Computer Organization and Architecture	2			2	2	ISE ESE	40 60	16 24	40
3		РСС	25UG-PCC- CB303	Computational Statistics	3*			2	3	ISE ESE	40 60	16 24	40
4		РСС	25UG-PCC- CB304	Software Engineering	3*			2	3	ISE ESE	40 60	16 24	40
5		РСС	25UG-PCC- CB305	Object Oriented Programming	3*	-		2	3	ISE ESE	40 60	16 24	40
6	Multi- Disciplinary Course	MDM-1	25UG- MDM1- CB306	Object-Based Programming	2			2	2	ISA	25	10	10
7	Humanities Social Science and Management	Entrepreneurship p/Economics/ Mgmt. Course	25UG- EEC1- CB307- 1	Financial Management	2*			1	2	ISA	25	10	10
8		Value Education Course	23UG- VEC1- CB308-1	Ethics and Values in Business and Technology	2			2	2	ISA	25	10	10
9	Experiential Learning Courses	Community Engg Project (CEP/FP)	23UG-CEP- CB309	Community Engagement Activity (CEA)/Field Project				2		ISA	25	10	10
11	Program Core Course	РСС	23UG-PCC- CB302P	Computer Organization and Architecture Lab			2	1	2	ISA	25	10	10
12		РСС	23UG-PCC- CB305P	Object Oriented Programming Lab			2	1	2	ISA POE	25 50	10 20	10 20
13		РСС	23UG-PCC- CB303P	Computational Statistics Lab			2	1	2	ISA	25	10	10
										POE	50	20	20
		РСС	23UG-PCC- CB304P	Software Engineering Lab			2	1	2	ISA	25	10	10
					20		08	21	028		800	320	320

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

Multidisciplinary Minor (MDM) Courses Bucket

Branch: Computer Science & Buisness System Fundamentals of Computing and Software Systems

Sr. No	Semester	Category	Course Code	Course Title	Teaching Scheme			Examination & Evaluation Scheme					
					L	Т	Р	С	СН	Compone nt	Marks	Min for P	Marks assing
1	Ш	MDM-1	25UG- MDM1- CB306	Object Oriented Programming	2			2	2	ISA	50	20	20
2	IV	MDM-II	25UG- MDM2- CB405	Operations Research	2			2	2	ISA	50	20	20
3	V	MDM-III	25UG-PCC- CB505	Data Structure & Algorithm	3			3	3	ISE ESE	40 60	16 24	40
4	VI	MDM-IV	25UG-PCC- CB605	Operating System	2			2	2	ISA	50	20	20
5	VII	MDM-V	25UG-PCC- CB705	Database Management Systems	3			3	3	ISA	50	20	20
6	VIII	MDM-VI	25UG-PCC- CB804	System Analysis and Software Testing	2			2	2	ISA	50	20	20
					14			14	14		350	140	140

Catyasaheb Kore Institute of Engineering & Technology

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

25UG-PCC- CB301- Formal Language and Automata Theory

Teaching Scheme			Evaluation Scheme					
Lectures	:	3* Hrs/Week	ISE	:	40 Marks			
Credits	:	2						
Tutorials	:		ESE	:	60 Marks			

Cours	e Objective: The objective of this course is to					
1	To introduce the fundamental concepts of formal languages, automata, and grammar					
	classifications, including the Chomsky hierarchy.					
2	To develop the ability to design and analyze finite automata, regular expre	essions, context-free				
	grammars, and pushdown automata for recognizing different language class	sses.				
3	To explore the capabilities and limitations of Turing machines and underst	tand the concepts of				
	decidability, undecidability, and computational universality.					
4	To provide a basic understanding of computational complexity, including	the classes NP, NP,				
	NP-completeness, and key theoretical results like Cook's Theorem.					
Cours	e Outcomes:					
co.	At the end of successful completion of the course, the students will	Bloom's				
COS	be able to	Taxonomy				
CO1	Describe the fundamental concepts of formal languages, grammars, and	Understand				
	Chomsky hierarchy.	Understand				
CO2						
	Construct deterministic and non-deterministic finite automata, regular	Apply				
	Construct deterministic and non-deterministic finite automata, regular expressions, and context-free grammars for language recognition.	Apply				
CO3	Construct deterministic and non-deterministic finite automata, regular expressions, and context-free grammars for language recognition. Demonstrate the equivalence between different models of computation such as	Apply				
CO3	Construct deterministic and non-deterministic finite automata, regular expressions, and context-free grammars for language recognition. Demonstrate the equivalence between different models of computation such as DFA, NFA, regular expressions, and regular grammars	Apply Analyze				
CO3 CO4	Construct deterministic and non-deterministic finite automata, regular expressions, and context-free grammars for language recognition. Demonstrate the equivalence between different models of computation such as DFA, NFA, regular expressions, and regular grammars Use pumping lemma and related techniques to determine language properties	Apply Analyze				
CO3 CO4	Construct deterministic and non-deterministic finite automata, regular expressions, and context-free grammars for language recognition. Demonstrate the equivalence between different models of computation such as DFA, NFA, regular expressions, and regular grammars Use pumping lemma and related techniques to determine language properties and limitations of automata	Apply Analyze Apply				
CO3 CO4 CO5	Construct deterministic and non-deterministic finite automata, regular expressions, and context-free grammars for language recognition. Demonstrate the equivalence between different models of computation such as DFA, NFA, regular expressions, and regular grammars Use pumping lemma and related techniques to determine language properties and limitations of automata Differentiate the behavior of Turing machines and categorize problems based on	Apply Analyze Apply				

Course Description :

This course provides a theoretical foundation of computer science through the study of formal languages, automata, computability, and complexity. It covers key models of computation including finite automata, pushdown automata, and Turing machines. Students will explore the classification of languages through the Chomsky hierarchy and study properties of regular, context-free, and context-sensitive languages. The course also introduces fundamental concepts of undecidability and computational complexity, including P, NP, and NP-complete problems. It lays the groundwork for understanding what problems can be solved using computation and the inherent limitations of computational models.

Prerequisites :	 Discrete Mathematics Data Structures and Algorithms Basics of C Programming.

Fatyasaheb Kore Institute of Engineering & Technology Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

	Section – I	
	Introduction:	
Unit-1	Alphabet, languages and grammars, productions and derivation, Chomsky hierarchy of languages.	06Hr
	Regular languages and finite automata:	
	Regular expressions and languages, deterministic finite automata (DFA) and equivalence	
	with regular expressions, nondeterministic finite automata (NFA) and equivalence with	
	DFA, regular grammars and equivalence with finite automata, properties of regular	
	languages, Kleene's theorem, pumping lemma for regular languages, Myhill- Nerode	
	theorem and its uses, minimization of finite automata.	
Unit-2	Context-free languages and pushdown automata:	06Hr
	Context-free grammars (CFG) and languages (CFL), Chomsky and Greibach normal	
	forms, nondeterministic pushdown automata (PDA) and equivalence with CFG, parse	
	trees, ambiguity in CFG, pumping lemma for context-free languages, deterministic	
	pushdown automata, closure properties of CFLs.	
Unit-3	Context-sensitive languages:	06Hr
	Context-sensitive grammars (CSG) and languages, linear bounded automata and	
	equivalence with CSG.	
	Section-II	
Unit_4	Turing machines:	6Hr
	The basic model for Turing machines (TM), Turing recognizable (recursively	
	enumerable) and Turing-decidable (recursive) languages and their closure properties,	
	variants of Turing machines, nondeterministic TMs and equivalence with deterministic	
	TMs, unrestricted grammars and equivalence with Turing machines, TMs as enumerators	
Unit-5	Undecidability:	6Hr
	Church-Turing thesis, universal Turing machine, the universal and diagonalization	
	languages, reduction between languages and Rice s theorem, undecidable problems about	
	languages.	
Unit-6	Basic Introduction to Complexity:	6Hr
	Introductory ideas on Time complexity of deterministic and nondeterministic Turing	
	machines, P and NP, NP- completeness, Cook's Theorem, other NP - Complete problems	

References

Text Books :

1. Introduction to Automata Theory, Languages, and Computation John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman.

- 1. Elements of the Theory of Computation, Harry R. Lewis and Christos Papadimitriou.
- 2. Automata and Computability, Dexter C. Kozen.
- 3. Introduction to the Theory of Computation, Michael Sipser.
- 4. Introduction to Languages and the Theory of Computation, John Martin.

Fatyasaheb Kore Institute of Engineering & Technology

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

25UG-PCC- CB302- Computer Organization and Architecture

Teaching	Scheme
----------	--------

Lectures	:	2 Hrs/Week
Credits	:	2
Tutorials	:	

Evaluation Scheme ISE : 40 Marks

ESE : 60 Marks

Cours	Course Objective: The objective of this course is to					
1	This course aims to introduce the fundamental concepts of computer organization, including Boolean logic, digital circuits, and the basic functional units of a computer system. It covers instruction set architecture, data representation, and arithmetic operations such as addition, multiplication, and floating-point calculations. Students will learn about CPU control unit design, memory organization, and input-output mechanisms like interrupts and DMA. The course also introduces pipelining, cache memory, and parallel processing concepts to understand system performance and efficiency.					
Cours	e Outcomes:					
COs	At the end of successful completion of the course, the students will	Bloom's				
COS	be able to	Taxonomy				
CO1	Explain the structure and function of basic computer components including CPU, memory, and I/O systems.	Understand				
CO2	Describe the instruction set architecture, addressing modes, and instruction execution cycle of a typical CPU.	Understand				
CO3	Perform number system conversions and computations using signed numbers, fixed-point, and floating-point representations.	Apply				
CO4	Illustrate the working of arithmetic units such as adders and multipliers, and describe techniques for division and floating-point operations.	Apply				
CO5	Discuss the functioning of control units, memory hierarchy, cache mapping, pipelining, and basics of parallel processing.	Apply				

Course Description : This course covers the fundamentals of computer organization, including digital logic, CPU architecture, memory systems, and input-output mechanisms. It introduces instruction sets, data representation, arithmetic operations, and control unit design. Students will also learn about pipelining, cache memory, and parallel processing to understand modern computer performance.

	٠	Digital Logic and Circuits.
Prerequisites :	•	Computer Fundamentals and Programming Concepts

 Catyasaheb Kore Institute of Engineering & Technolog

 Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

	Section – I		
∐nit-1	Basics of Digital Circuits and Computer Architecture Basics in Boolean logic and Combinational/Sequential Circuits. Functional blocks of a	4 Hr	
	computer: CPU, memory, input-output subsystems, control unit.		
Unit-2 Instruction set architecture of a CPU: Registers, instruction execution cycle, RTL interpretation of instructions, addressing modes, instruction set. Outlining instruction sets of some common CPUs.			
	Data representation : Signed number representation, fixed and floating point representations, character representation.		
Unit-3	Computer arithmetic:	06Hr	
	Integer addition and subtraction, ripple carry adder, carry look-ahead adder, etc.		
	multiplication - shift-and-add, Booth multiplier, carry save multiplier, etc. Division		
	restoring and non-restoring techniques, floating point arithmetic, IEEE 754 format.		
Section	-11		
Unit_4	Introduction to x86 architecture.	6Hr	
Unit-4	CPU control unit design: Hardwired and micro-programmed design approaches, design of a simple hypothetical CPU		
	Memory system design: Semiconductor memory technologies, memory organization.		
TL.:4 5	Peripheral devices and their characteristics:	6Hr	
Unit-5	Input-output subsystems, I/O device interface, I/O transfers – program controlled,		
	interrupt driven and DMA, privileged and non-privileged instructions, software interrupts		
	and exceptions. Programs and processes - role of interrupts in process state transitions,		
	I/O device interfaces – SCII, USB		
Unit_6	Pipelining: Basic concepts of pipelining, throughput and speedup, pipeline hazards.	6Hr	
Onit-0	Parallel Processors: Introduction to parallel processors, Concurrent access to memory and		
	cache coherency.		
	Memory organization: Memory interleaving, concept of hierarchical memory		
	organization, cache memory, cache size vs. block size, mapping functions, replacement		
	algorithms, write policies.		

References

Text Books :

- 1. Computer System Architecture M. M. Mano:, 3rd ed., Prentice Hall of India, New Delhi, 1993.
- 2. *Computer Organization and Design: The Hardware/Software Interface*, David A. Patterson and John L. Hennessy.
- 3. Computer Organization and Embedded Systems, Carl Hamacher.

- 1. Computer Architecture and Organization, John P. Hayes.
- 2. Computer Organization and Architecture: Designing for Performance, William Stallings.
- 3. Computer System Design and Architecture, Vincent P. Heuring and Harry F. Jordan.

Fatyasaheb Kore Institute of Engineering & Technology

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

25UG-PCC- CB303- Computational Statistics

	Teach	ing Scheme	Eval	uati	ion Scheme
Lectures	:	3 Hrs/Week	ISE	:	40 Marks
Credits	:	2			
Tutorials	:		ESE	:	60 Marks

Cours	e Objective: The objective of this course is to				
1	Introduce the theoretical foundations and applications of multivariate tech	Introduce the theoretical foundations and applications of multivariate techniques.			
2	Develop competence in estimation and diagnostics for multivariate models	s.			
3	Enable effective interpretation of complex datasets using statistical tools.				
4	Guide the selection and validation of appropriate multivariate methods for	given problems			
Cours	e Outcomes:				
COs	At the end of successful completion of the course, the students will	Bloom's			
COS	be able to	Taxonomy			
CO1	Explain the multivariate normal distribution and its relationship to regression models.	Understand			
CO2	Estimate parameters and assess assumptions in multiple and multivariate regression models.	Analyze			
CO3	Construct and evaluate linear discriminant functions for classification problems.	Analyze			
CO4	Construct principal component and factor analysis for data reduction and interpretation.	Analyze			
CO5	Implement clustering algorithms and interpret cluster structures in multivariate data.	Analyze			

Course Description :

This course provides a comprehensive understanding of multivariate statistical methods used in data analysis. Topics include multivariate normal distribution, multiple and multivariate regression models, discriminant analysis, principal component analysis, factor analysis, and cluster analysis. Emphasis is placed on model assumptions, estimation, interpretation, and diagnostics in real-world data contexts.

	Probability and Statistics
Prerequisites :	Linear Algebra

Fatyasaheb Kore Institute of Engineering & Technology Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

	Section – I				
Unit-1	Multivariate Normal Distribution: Multivariate Normal Distribution Functions, Conditional Distribution and its relation to regression model, Estimation of parameters.	06Hr			
Unit-2	Multiple Linear Regression Model : Standard multiple regression models with emphasis on detection of collinearity, outliers, non-normality and autocorrelation, Validation of model assumptions.	06Hr			
Unit-3	Multivariate Regression: Assumptions of Multivariate Regression Models, Parameter estimation, Multivariate Analysis of variance and covariance	06Hr			
Section-II					
Unit-4	Discriminant Analysis : Statistical background, linear discriminant function analysis, Estimating linear discriminant functions and their properties.	6Hr			
Unit-5	 Principal Component Analysis & Factor Analysis: Principal components, Algorithm for conducting principal component analysis, deciding on how many principal components to retain, H-plot. Factor analysis model, Extracting common factors, determining number of factors, Transformation of factor analysis solutions, Factor scores. 	6Hr			
Unit-6	Cluster Analysis: Introduction, Types of clustering, Correlations and distances, clustering by partitioning methods, hierarchical clustering, overlapping clustering, K-Means Clustering-Profiling and Interpreting Clusters	6Hr			

References Text Books :

1. An Introduction to Multivariate Statistical Analysis, T.W. Anderson.

2. Applied Multivariate Data Analysis, Vol I & II, J.D. Jobson.

- 1. Statistical Tests for Multivariate Analysis, H. Kris.
- 2. Programming Python, Mark Lutz.
- 3. Multivariate Statistical Analysis, D.F. Morrison.
- 4. Python for Data Analysis, Wes Mc Kinney.

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

25UG-PCC- CB304- Software Engineering

Teaching Scheme			Evaluation Scheme		
Lectures	:	3* Hrs/Week	ISE	:	40 Marks
Credits	:	2			
Tutorials	:		ESE	:	60 Marks

Course	e Objective: The objective of this course is to			
1	Understand the significance of software engineering in large-scale system development.			
2	Gain knowledge of project management, lifecycle models, and cost estima	tion techniques.		
3	Explore quality assurance models and reliability estimation.			
4	Learn effective methods for requirements analysis, modeling, and docume	ntation.		
Course	e Outcomes:			
CO	At the end of successful completion of the course, the students will	Bloom's		
COS	be able to	Taxonomy		
CO1	Describe the evolution, scope, and importance of software engineering in project success.	Understand		
CO2	Explain lifecycle models, planning strategies, cost estimation, and risk management in software projects.	Understand		
CO3	Identify and analyze factors affecting software quality and reliability using standard models.	Analyze		
CO4	Develop and document software requirements and design using structured and object-oriented techniques.	Create		
C O 5	Perform systematic software testing and validation techniques to ensure product quality.	Evaluate		

Course Description :

This course offers a structured approach to software development, covering essential principles, models, and practices in software engineering. It includes topics such as project management, quality assurance, requirements engineering, object-oriented design, and testing. The focus is on ensuring software reliability, maintainability, and timely delivery in real-world projects.

	Basics of Programming
Prerequisites :	Data Structure

Tatyasaheb Kore Institute of Engineering & Technology Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

	Section – I	
	Introduction:	
Unit 1	Programming in the small vs. programming in the large; software project failures and	06Hr
0111-1	importance of software quality and timely availability; engineering approach to software	
	development; role of software engineering towards successful execution of large software	
	projects; emergence of software engineering as a discipline.	
Unit 2	Software Project Management:	06Hr
01111-2	Basic concepts of life cycle models - different models and milestones; software project	
	planning - identification of activities and resources; concepts of feasibility study;	
	techniques for estimation of schedule and effort; software cost estimation models and	
	concepts of software engineering economics; techniques of software project control and	
	reporting; introduction to measurement of software size; introduction to the concepts of	
	risk and its mitigation; configuration management.	
Unit 2	Software Quality and Reliability:	06Hr
Unit-3	Internal and external qualities; process and product quality; principles to achieve software	
	quality; introduction to different software quality models like McCall, Boehm, FURPS /	
	FURPS+, Dromey, ISO – 9126; introduction to Capability Maturity Models (CMM and	
	CMMI); introduction to software reliability, reliability models and estimation.	
	concepts of inspection.	
Section	-II	
.	Software Requirements Analysis, Design and Construction:	6Hr
Unit-4	Introduction to Software Requirements Specifications (SRS) and requirement elicitation	0111
	techniques: techniques for requirement modeling – decision tables event tables state	
	transition tables. Petri nets: requirements documentation through use cases: introduction	
	to UML, introduction to software metrics and metrics based control methods: measures of	
	code and design quality.	
TI	Object Oriented Analysis, Design and Construction	6Hr
Unit-5	Concepts the principles of abstraction, modularity, specification, encapsulation and	
	information hiding; concepts of abstract data type; Class Responsibility Collaborator	
	(CRC) model; quality of design; design measurements; concepts of design patterns;	
	Refactoring; object oriented construction principles; object oriented metrics.	
Unit 6	Software Testing: Introduction to faults and failures:	6Hr
Unit-0	basic testing concepts; concepts of verification and validation; black box and white box	
	tests; white box test coverage - code coverage, condition coverage, branch coverage;	
	basic concepts of black-box tests - equivalence classes, boundary value tests, usage of	
	state tables; testing use cases; transaction based testing; testing for non-functional	
	requirements – volume, performance and efficiency;	
Dâ		
Refere	nces	

Text Books :

1. Software Engineering, Ian Sommerville.

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

- 1. Fundamentals of Software Engineering, Carlo Ghezzi, Jazayeri Mehdi, Mandrioli Dino
- 2. Software Requirements and Specification: A Lexicon of Practice, Principles and Prejudices, Michael Jackson
- 3. The Unified Development Process, Ivar Jacobson, Grady Booch, James Rumbaugh
- 4. Design Patterns: Elements of Object-Oriented Reusable Software, Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides

Tatyasaheb Kore Institute of Engineering & Technology Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

25UG-PCC- CB305 - Object Oriented Programming

Teaching Scheme			Evaluation Scheme		
Lectures	:	3* Hrs/Week	Practical's	:	
Credits	:	2	ISE	:	40 Marks
Tutorials	:		ESE	:	60 Marks

Course	e Objective: The objective of this course is to			
1	To develop proficiency in procedural programming using C.			
2	To introduce object-oriented programming concepts using C++.			
3	To explore advanced features like inheritance, polymorphism, and tem	nplates.		
4	To build problem-solving skills through structured and modular codin	g.		
5	To apply concepts of file handling, memory management, and excepti	on handling.		
Course	e Outcomes:			
COr	At the end of successful completion of the course, the students will	Bloom's		
CUS	be able to	Taxonomy		
CO1	Explain the syntax, semantics, and features of C and C++ programming languages.	Understand		
CO2	Apply procedural and object-oriented programming techniques to solve real-life problems.	Apply		
CO3	Develop modular programs using functions, pointers, and classes.	Apply		
CO4	Analyze and implement features like inheritance, polymorphism, and templates in C++.	Analyze		
CO5	Design and debug robust applications using exception handling and file operations.	Create		

Course Description :				
This course introduces the principles of procedural and object-oriented programming using C and C++. If emphasizes core programming constructs, memory management, functions, and object-oriented features such as encapsulation, inheritance, and polymorphism. Students gain practical skills through structured programming tasks and application development using standard libraries, templates, and error-handling mechanisms.				
Prerequisites :	Computers and algorithmsLogic development and flowcharting skills			

 Tatyasaheb Kore Institute of Engineering & Technology

 Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

	Section – I	
Unit-1	Procedural programming, An Overview of C: Types Operator and Expressions, Scope and Lifetime, Constants, Pointers, Arrays, and References, Control Flow, Functions and Program Structure, Namespaces, error handling, Input and Output (C-way), Library Functions (string, math, stdlib), Command line arguments, Pre-processor directive	04Hr
Unit-2	Some difference between C and C++: Single line comments, Local variable declaration within function scope, function declaration, function overloading, stronger type checking, Reference variable, parameter passing – value vs reference, passing pointer by value or reference, #define constant vs const, Operator new and delete, the typecasting operator, Inline Functions in contrast to macro, default arguments	04Hr
Unit-3	The Fundamentals of Object Oriented Programming : Necessity for OOP, Data Hiding, Data Abstraction, Encapsulation, Procedural Abstraction, Class and Object.	04Hr
Unit-4	More extensions to C in C++ to provide OOP Facilities: Scope of Class and Scope Resolution Operator, Member Function of a Class, private, protected and public Access Specifier, this Keyword, Constructors and Destructors, friend class, error handling (exception)	04Hr
Unit-5	Essentials of Object Oriented Programming: Operator overloading, Inheritance – Single and Multiple, Class Hierarchy, Pointers to Objects, Assignment of an Object to another Object, Polymorphism through dynamic binding, Virtual Functions, Overloading, overriding and hiding, Error Handling.	04Hr
Unit-6	Generic Programming:	04Hr
	Template concept, class template, function template, template specialization Input and Output: Streams, Files, Library functions, formatted output.	

References Text Books : 1. The C++ Programming Language, Bjarne Stroustrup, Addison Wesley.

C++ and Object-Oriented Programming Paradigm, Debasish Jana, PHI Learning Pvt. Ltd.

- 1. . *Programming Principles and Practice Using C++*, Bjarne Stroustrup, Addison Wesley.
- 2. *The Design and Evolution of C++*, Bjarne Stroustrup, Addison Wesley

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

25UG- MDM1- CB306-Object-Based Programming

Teaching Scheme

Lectures	:	2 Hrs/Week
Credits	:	2
Tutorials	:	

Evaluation Scheme 25 Marks ISA :

ESE :---

Cours	Course Objective: The objective of this course is to				
1	To develop foundational programming skills using procedural programming techniques in C.				
2	To understand and implement structured program design including memory pointers, and functions.	ry management,			
3	To introduce and apply object-oriented concepts using C++ for developing maintainable software.	g modular and			
Cours	e Outcomes:				
COs	At the end of successful completion of the course, the students will	Bloom's			
COS	be able to	Taxonomy			
CO1	Write efficient C programs using appropriate types, operators, expressions, control structures, and modular functions.	Understand			
CO2	Distinguish between procedural and object-oriented approaches, and identify key differences between C and C++.	Analyze			
CO3	Develop C++ programs utilizing classes, objects, constructors/destructors, access specifies, and member functions.	Create			
CO4	Use OOP concepts such as encapsulation, abstraction, and function overloading to solve real-world programming problems.	Analyze			

Course Description :

This course offers a comprehensive introduction to procedural programming using the C language, followed by a transition to the object-oriented paradigms of C++. Students will explore fundamental programming constructs such as variables, data types, control flow, functions, pointers, and memory management in C. The course then moves on to the advanced features and extensions provided by C++, emphasizing differences from C and the core concepts of Object-Oriented Programming (OOP), such as encapsulation, abstraction, inheritance, and polymorphism. Students will also learn to use the standard library, handle errors effectively, and manage input/output operations.

	 Computer fundamentals and problem-solving techniques. 			
Prerequisites :	rerequisites :			
	• Algorithms and flowcharts.			

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

Fatyasaheb Kore Institute of Engineering & Technology

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

	Section – I				
	Procedural programming, An Overview of C:				
Unit_1	Types Operator and Expressions, Scope and Lifetime, Constants, Pointers, Arrays, and				
	References, Control Flow, Functions and Program Structure, Namespaces, error handling,				
	Input and Output (C-way), Library Functions (string, math, stdlib), Command line				
	arguments, Pre-processor directive				
Unit-2	Some difference between C and C++:	04Hr			
	Single line comments, Local variable declaration within function scope, function				
	declaration, function overloading, stronger type checking, Reference variable, parameter				
	passing - value vs reference, passing pointer by value or reference, #define constant vs				
	const, Operator new and delete, the typecasting operator, Inline Functions in contrast to				
	macro, default arguments				
Unit-3	The Fundamentals of Object Oriented Programming:	04Hr			
	Necessity for OOP, Data Hiding, Data Abstraction, Encapsulation, Procedural				
	Abstraction, Class and Object.				
Unit-4	More extensions to C in C++ to provide OOP Facilities:				
	Scope of Class and Scope Resolution Operator, Member Function of a Class, private,				
	protected and public Access Specifier, this Keyword, Constructors and Destructors, friend				
	class, error handling (exception)				

References

Text Books :

- 1. *The C++ Programming Language*, Bjarne Stroustrup, Addison Wesley.
- 2. C++ and Object-Oriented Programming Paradigm, Debasish Jana, PHI Learning Pvt. Ltd.

- 1. Programming Principles and Practice Using C++, Bjarne Stroustrup, Addison Wesley.
- 2. The Design and Evolution of C++, Bjarne Stroustrup, Addison Wesley

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

25UG- EEC1- CB3071- Financial Management

Teaching Scheme		Eval	uati	ion Scheme	
Lectures	:	2* Hrs/Week	ISA	:	25 Marks
Credits	:	1			
Tutorials	:		ESE	:	

Course	Course Objective: The objective of this course is to			
1	To introduce the basic concepts, functions, and goals of financial management.			
2	To develop an understanding of financial planning, capital budgeting, and working capital management.			
3	To enable students to evaluate investment options and financial performant tools and techniques.	ce using key		
Course	e Outcomes:			
COs	At the end of successful completion of the course, the students will	Bloom's		
	be able to	Taxonomy		
CO1	Understand the concepts and functions of financial management and its role in decision-making.	Understand		
CO2	Apply financial tools for budgeting, working capital, and capital investment decisions.	Apply		
CO3	Analyze financial performance using ratio analysis and evaluate investment alternatives.	Analyze		

Course Description :

This course introduces students to the fundamental concepts of financial management, including financial analysis, planning, budgeting, investment decisions, and capital management. It aims to equip students with essential tools for sound financial decision-making in business and technology-driven environments.

	•
Prerequisites :	

Fatyasaheb Kore Institute of Engineering & Technology Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

Section – I			
Unit-1	Fundamentals of Financial Management: Nature and scope of financial management, Objectives and functions, Role of financial manager, Financial decision areas – Investment, Financing, Dividend, Financial goal vs. wealth maximization, Time value of money – Present and Future Value, Risk and return trade-off.	04Hr	
Unit-2	Financial Analysis and Planning: Financial statements – Balance Sheet, Profit & Loss Account, Cash Flow Statement; Ratio analysis – Liquidity, Solvency, Profitability, Efficiency ratios; Fund Flow and Cash Flow analysis; Financial forecasting techniques; Budgeting and Budgetary control.	04Hr	
Unit-3	Investment and Capital Budgeting Decisions: Capital budgeting process and significance, Investment appraisal techniques – Payback Period, NPV, IRR, ARR, Profitability Index; Risk analysis in capital budgeting; Cost of capital – equity, debt, and WACC; Leverage – Operating, Financial, and Combined.	04Hr	
Unit-4	Working Capital and Financing Decisions: Concept and classification of working capital, Determinants of working capital, Management of cash, receivables, and inventory; Sources of financing – long-term and short-term; Dividend decision – types of dividends and factors affecting dividend policy.	04Hr	

References

Text Books :

1. I.M. Pandey, Financial Management, Vikas Publishing House, Latest Edition

- 1. Prasanna Chandra, Financial Management: Theory and Practice, Tata McGraw-Hill
- 2. Eugene F. Brigham & Joel F. Houston, *Fundamentals of Financial Management*, Cengage Learning
- 3. Khan and Jain, Financial Management, Tata McGraw-Hill

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

25UG- VEC1- CB3072- Ethics and Values in Business and Technology

Teaching Scheme		Eval	uati	ion Scheme	
Lectures	:	2 Hrs/Week	ISA	:	25 Marks
Credits	:	2			
Tutorials	:		ESE	:	

Course	Course Objective: The objective of this course is to			
1	To understand the importance of ethics and human values in business and professional			
	contexts.			
2	To explore ethical challenges in emerging technologies and corporate prac	tices.		
3	To develop decision-making skills to address moral and professional dilen	nmas.		
Course	Outcomes:			
At the end of successful completion of the course, the students will Bloc				
COS	be able to	Taxonomy		
CO1	Explain key ethical principles and human values relevant to business and professional environments.	Understand		
CO2	Identify ethical issues in business operations and technological applications including AI, data privacy, and cybersecurity.	Understand		
CO3	Apply ethical frameworks and decision-making models to analyze real- world cases and propose responsible solutions.	Apply		

Course Description :

This course aims to sensitize students to the ethical and value-based challenges encountered in the domains of business and technology. It introduces frameworks for ethical decision-making, explores professional responsibilities, and highlights the role of ethics in technology development, data privacy, and corporate governance.

	Societal and professional responsibilities
Prerequisites :	• Current trends in business and technology

Fatyasaheb Kore Institute of Engineering & Technology Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

	Section – I	
Unit-1	Introduction to Ethics and Human Values Definition, nature, and importance of ethics and values; types of values – personal, cultural, organizational; moral dilemmas and ethical decision-making; ethics vs law; value system in professional life.	04Hr
Unit-2	Business Ethics Principles of business ethics; ethics in corporate governance; ethical issues in marketing, finance, and HR; workplace ethics – discrimination, harassment, transparency, whistleblowing; CSR (Corporate Social Responsibility) and sustainability.	04Hr
Unit-3	Technology and Ethics Technology as a double-edged sword; ethical concerns in AI, data privacy, cyber security, and automation; intellectual property rights (IPR); ethical software development; professional codes of ethics (ACM, IEEE).	04Hr
Unit-4	Case Studies and Emerging Issues Case studies on ethical dilemmas in business and tech (e.g., Facebook-Cambridge Analytical, Theranos, Uber, facial recognition); environmental ethics in technology; ethics of surveillance and social media; digital well-being and responsible innovation.	04Hr

References

Text Books :

1. Business Ethics: Concepts and Cases, Manuel G. Velasquez, Pearson Education.

- 2. Ethics in Information Technology, George W. Reynolds, Cengage Learning.
- 3. Professional Ethics, R. Subramanian, Oxford University Press.
- 4. Ethics and Technology: Controversies, Questions, and Strategies for Ethical Computing, Herman T. Tavani, Wiley.

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

25UG-CEP- CB3073- Community Engagement Activity (CEA)/Field Project

Teaching Scheme		Evaluation Scheme				
Lectures	:		ISA	:	25 Marks	
Credits	:	2				
Tutorials	:		ESE	:		

Course	Objective: The objective of this course is to			
1	Understand community challenges and societal issues.			
2	Apply computational thinking and business knowledge to real-world scenarios.			
3	Build empathy, leadership, and project management skills.			
4	Promote sustainable development through technology and innovation.			
Course	Outcomes:			
COa	At the end of successful completion of the course, the students will	Bloom's		
COS	be able to	Taxonomy		
CO1	Identify and analyze real-world community problems through field research.	Analyze		
CO2	Design appropriate solutions using computer science and business principles to address community needs.	Create		
CO3	Collaborate effectively with diverse stakeholders and team members in executing the field project.	Apply		
CO4	Evaluate the impact of the implemented solution and reflect on ethical, social, and professional responsibilities.	Evaluate		
Course	Description :			

This course emphasizes experiential learning through real-world community engagement or field projects. Students identify social issues, design technology-driven or business-oriented solutions, and collaborate with stakeholders to implement and assess impact, fostering civic responsibility, innovation, and interdisciplinary application of CSBS knowledge.

 Prerequisites : Computer Science fundamentals Exposure to Business Communication and Ethics

Section – I

Unit-1 The Community Engagement Activity (CEA) or Field Project is a practical component of the CSBS curriculum aimed at bridging classroom learning with real-world societal challenges. It encourages students to identify, analyze, and address local community issues through active participation, fieldwork, and innovative problem-solving. The course provides exposure to areas such as digital literacy, environmental sustainability, healthcare awareness, financial inclusion, and social entrepreneurship. Through collaborative efforts, students apply their technical and business knowledge to design and implement impactful solutions, fostering empathy, leadership, and a sense of civic responsibility. The activity culminates in a detailed project report and presentation, showcasing the students' engagement, outcomes achieved, and learning reflections.

Fatyasaheb Kore Institute of Engineering & Technology

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

aharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

25UG-PCC- CB302P - Computer Organization and Architecture Lab

Teaching Scheme		Evaluation Scheme			
Lectures	:		Practical's	:	2 Hrs/Week
Credits	:	1	ISA	:	25 Marks
Tutorials	:		ESE	:	

Course Description :

The Computer Organization and Architecture Lab provides hands-on experience with the fundamental concepts of computer systems. Through practical experiments, students explore instruction execution, data representation, arithmetic operations, memory organization, control unit design, and I/O mechanisms. The lab reinforces theoretical knowledge by enabling students to simulate and analyze the internal functioning of a computer, enhancing their understanding of system architecture and performance.

Experiment List

Expt. No.	Experiment Title	Bloom's
		Taxonomy
1	Simulate Instruction Execution Cycle	Understand
2	Number System Conversion (Binary, Decimal, Hex)	Apply
3	Implementation of Addressing Modes	Apply
4	Design and Simulation of Ripple Carry Adder	Apply
5	Booth's Multiplication Algorithm Simulation	Analyze
6	Floating Point Representation and IEEE 754 Format	Understand
7	Simulation of CPU Control Unit (Hardwired or Micro programmed)	Create
8	Demonstration of Interrupt-Driven I/O and DMA Mechanisms	Understand
9	Pipeline Simulation and Hazard Detection	Analyze
10	Cache Memory Mapping and Replacement Policies Simulation	Apply

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

25UG-PCC- CB305P - Object Oriented Programming Lab

Teaching Scheme			Evaluation Scheme		
Lectures	:	2* Hrs/Week	Practical's	:	2 Hrs/Week
Credits	:	1	ISA	:	25 Marks
Tutorials	:		POE	:	50 Marks

Course Description :

This course introduces the principles of procedural and object-oriented programming using C and C++. It emphasizes core programming constructs, memory management, functions, and object-oriented features such as encapsulation, inheritance, and polymorphism. Students gain practical skills through structured programming tasks and application development using standard libraries, templates, and error-handling mechanisms.

	Computers and algorithms
Prerequisites :	Logic development and flowcharting skills

Experiment List

Expt. No.	Experiment Title	Bloom's Taxonomy
1	Write a program in C++ to demonstrate use of data types, operators, and	Understand
	control structures.	
2	Write a C++ program to implement classes and objects with data hiding and encapsulation.	Apply
3	Implement function overloading and operator overloading in C++.	Apply
4	Design a C++ program using constructors, destructors, and dynamic memory allocation.	Create
5	Write a program to implement single and multiple inheritances in C++.	Apply
6	Demonstrate runtime polymorphism using virtual functions and base class pointers.	Analyze
7	Implement class and function templates in C++ with specialization.	Apply
8	Develop a file handling program in C++ using stream and exception handling.	Create
9	Write a C++ program to use inline functions, default arguments, and reference variables.	Apply
10	Implement Macro and Inline Function to Compare Their Behavior in C++	Apply

References

Text Books :

1. *The C++ Programming Language*, Bjarne Stroustrup, Addison Wesley.

2. C++ and Object-Oriented Programming Paradigm, Debasish Jana, PHI Learning Pvt. Ltd.

Warananagar, Tal- Panhala, Dist- Kolhapur -416 113. Maharashtra

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

25UG-PCC- CB303P - Computational Statistics Lab

Teaching Scheme		Evaluation Scheme			
Lectures	:		Practical's	:	2 Hrs./Week
Credits	:	1	ISA	:	25 Marks
Tutorials	:		POE	:	50Marks

Course Description :

This laboratory course introduces students to Python programming fundamentals, data structures, file handling, and visualization using Matplotlib. It also covers the implementation of multivariate data analysis techniques including regression, clustering, and dimensionality reduction using real-world datasets. The lab focuses on practical application of statistical and machine learning methods for data-driven problem solving.

Experiments List

Expt. No.	Experiment Title	Bloom's
		Taxonomy
1	Write Python programs to demonstrate flow control, loops, and functions.	Apply
2	Implement classes, objects, and constructors in Python.	Apply
3	Perform file handling operations (text and binary files) in Python.	Apply
4	Visualize data using line plots, bar charts, and scatter plots with Matplotlib.	Apply
5	Customize graphs by adding text, titles, legends, and changing axes with Matplotlib.	Analyze
6	Perform simple linear and multiple regression analysis on real-world datasets.	Apply
7	Implement multivariate regression using scikit-learn on a real dataset.	Apply
8	Conduct cluster analysis using K-Means and Hierarchical Clustering algorithms.	Analyze
9	Apply Principal Component Analysis (PCA) for dimensionality reduction and visualization.	Analyze
10	Perform Linear Discriminant Analysis (LDA) and interpret class separation.	Evaluate

runanagar, iai Tannaia, bist Romapar 110 115. Manarashta

Fatyasaheb Kore Institute of Engineering & Technology

An Autonomous Institute, Affiliated to Shivaji University, Kolhapur

25UG-PCC- CB304P –Software Engineering Lab

Teaching Scheme			Eval	Evaluation Scheme		
Lectures	:		Practical's	:	2 Hrs./Week	
Credits	:	1	ISA	:	25 Marks	
Tutorials	:		POE	:		

Course Description :

This lab course provides hands-on experience in software engineering practices such as requirement analysis, system modeling using UML diagrams, and software testing. Students will use Agile tools like Jira or Azile for project tracking, estimation, and implementation of a chosen system

Experiments List

Expt. No.	Experiment Title	Bloom's
		Taxonomy
1	Write down the problem statement for a suggested system of relevance	Understand
	project.	
2	Do requirement analysis and develop Software Requirement Specification	Apply
	Sheet (SRS) for suggested system.	
3	To perform the function oriented diagram: Data Flow Diagram (DFD) and	Apply
	Structured chart.	
4	To perform the user's view analysis for the suggested system: Use case	Apply
	diagram.	
5	To draw the structural view diagram for the system: Class diagram, object	Apply
	diagram.	
6	To draw the behavioral view diagram : State-chart diagram, Activity	Apply
	diagram	
7	To perform the behavioral view diagram for the suggested system :	Apply
	Sequence diagram, Collaboration diagram	
8	To perform the implementation view diagram: Component diagram for the	Apply
	system.	
9	To perform the environmental view diagram: Deployment diagram for the	Apply
	system.	
10	To perform various testing using the testing tool unit testing, integration	Analyze
	testing for a sample code of the suggested system.	
11	To Perform Estimation of effort using FP Estimation for chosen system.	Analyze
12	To Prepare time line chart/Gantt Chart/PERT Chart for selected software	Create

Member Secretary **Board of Studies**

Chairman **Board of Studies**

Academic Dean TKIET,Wrananagar

Dean S.E.T.M

Principal

TKIET, Wrananagar